Integrated Power Fiber for Energy Conversion and Storage System[†]

Yongping Fu[‡], Hongwei Wu[‡], Shuyang Ye, Xin Cai, Xiao Yu, Shaocong Hou, Hanny Kafafy, & Dechun Zou*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Email: dczou@pku.edu.cn ‡The authors contributed equally to the paper

Figure S1. The structural schematic diagram of an integrated power fiber, shows the detail wires connection of an integrated unit in the test

Figure S2. The *J*-*V* curves of FDSSCs with gel electrolyte and liquid electrolyte. The gel electrolyte contains 0.6 M 1-butyl-3-methylimidazolium iodide, 0.025M iodine, 0.3 M 4-tert-butylpyridine, 0.05 M

lithium perchlorate ,0.05 M guanidine thiocyanate and 1.0g/mL polyethylene oxide (PEO, Mr=10000) in acetonitrile solution. The photovoltaic parameters are summarized in the Table S1.

Electrolyte	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)
Liquid	0.59	11.2	0.736	5.41
Gel	0.679	2.1	0.817	1.21

Table S1. The photovoltaic parameters of FDSSCs with liquid electrolyte and gel electrolyte

Figure S3. The relationship between PCE% of gel electrolyte based FSSCs and bending curvatures (1/R), where R is the bending radius. The reason for slight decline of efficiency might be the damage of TiO_2 film in the bending process.

Figure S4. Cyclic voltammetry (CV) curves of fiber supercapacitors using bare SS electrodes at a scan rate 0.100V/s

Figure S5. The discharge current versus the scan rate shows the linear range reaching 0.5 V/s.

Figure S6. Ragone plot of fiber supercapacitor

Figure S7. The galvanostatic charge/discharge curves of FSC with different operational voltage windows

Figure S8. Cyclic voltammetry (CV) curves of fiber supercapacitors using PANi-SS electrodes with different electrolytic deposition time at a scan rate 0.25V/s

Figure S9. The areal specific capacitance versus anodic deposition time

Figure S10. The CV curves of FSC with H₂SO₄ solution and PVA/H₂SO₄ gel as the electrolytes

Figure S11. The CV curves of gel based FSC under different bent radius and bending cycles, demonstrating good flexibility. The scan rate is 0.50V/s.

Figure S12. The SEM images of stainless steel I and stainless steel II. The former is ordinary stainless steel, while the later is made of several threads of finer stainless steel I.

Figure S13. The photos show that stainless steel I has shape memory and stainless steel has the ability to recover.

Figure S14. The CV curves of FSCs using PANi-SS I and PANi-SS II as the electrodes. The later shows much higher capacitance, due to its larger surface area.

the solar-charging process							
Photocharging	Voltage of	Energy storage in	Illuminating light	Overall energy			
time	FSC	FSC $(E_{FSC})(mJ)$	energy on FDSSC	conversion			
<i>T</i> (s)	$V(\mathbf{V})$		$E_{\text{Light}} (\text{mJ})$	$\eta_{ m overall}$			
0	0	0	0	0			
1.00	0.0918	0.1116	19.0	0.59			
2.00	0.1607	0.3417	38.0	0.90			
3.00	0.2228	0.6568	57.0	1.15			
4.00	0.2801	1.0377	76.0	1.37			
5.00	0.3328	1.4651	95.0	1.54			
6.00	0.3817	1.9281	114.0	1.69			
7.00	0.4285	2.4297	133.0	1.83			
8.00	0.4737	2.9684	152.0	1.95			
9.00	0.5158	3.5194	171.0	2.06			
10.00	0.5515	4.0235	190.0	2.12			
10.51*	0.5661	4.2401	199.7	2.12			
11.00	0.5777	4.4156	209.0	2.11			
12.00	0.5945	4.6759	228.0	2.05			
13.00	0.6046	4.8357	247.0	1.96			
14.00	0.6104	4.9289	266.0	1.85			
15.00	0.6127	4.9832	285.0	1.75			
16.00	0.6162	5.0230	304.0	1.65			
17.00	0.6174	5.0429	323.0	1.56			
18.00	0.6186	5.0629	342.0	1.48			
19.00	0.6192	5.0729	361.0	1.41			
20.00	0.6198	5.0828	380.0	1.34			
21.00	0.6201	5.0879	399.0	1.28			
22.00	0.6204	5.0929	418.0	1.22			
23.00	0.6207	5.0979	437.0	1.17			
24.00	0.621	5.1029	456.0	1.12			

Table S2. Summary of some parameters of integrated power fiber during

Note: the C_{FSC} is 26.46 mF, the P_{in} is 100.0 mW/cm² and the A_{FDSSC} is 0.190 cm². * is the maximum overall energy conversion. $E_{\text{FSC}} = 1/2C_{\text{FSC}}V^2$ (mJ), $E_{\text{Light}} = P_{\text{in}} \times A_{\text{FDSSC}} \times t$, $\eta_{\text{overall}} = E_{\text{FSC}}/E_{\text{Light}}$