Supplementary Information

Gold Nanoparticles Inlaid TiO₂ Photoanodes: A Superior Candidate for High-Efficiency Dye-Sensitized Solar Cells

Yan Li,^{†,‡} *Hong Wang*,^{†,⊥} *Quanyou Feng*,^{†,⊥} *Gang Zhou*,[†] *and Zhong-Sheng Wang**[†]

[†] Department of Chemistry, Lab of Advanced Materials, Fudan University, Shanghai 200438, P. R. China

[‡] Present address: Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China

* E-mail: zs.wang@fudan.edu.cn

Figure S1. Synthetic route of the cross-linked polymer (CLP).

Figure S2. TEM image of the as-synthesized polymer stabilized Au nanoparticles dispersed in methanol.

Figure S3. UV-vis absorption spectrum of the as-synthesized polymer stabilized Au nanoparticles dispersed in methanol.

Figure S4. XPS spectrum of the Au-TiO₂ (Au/TiO₂ = 0.800wt%) composite film.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

Figure S5. (a) The chemical structure of **FNE29** and (b) the UV-vis absorption spectrum of **FNE29** in THF.

Figure S6. Efficiency evolution of the best DSSC fabricated with 0.168 wt% Au-TiO₂ photoanode subjected to aging.

Figure S7. The multiples in enhancement of maximum absorbance of **FNE29** caused by the plasma effect as a function of Au amount. Assuming that the absorbance of dye-loaded TiO₂ film is proportional to the dye amount without regard to the plasma effect, this suppositional absorbance $(A'(Au-TiO_2))$ for each dye-loaded Au-TiO₂ film is estimated from the absorbance of dye-loaded pure TiO₂ film $(A(TiO_2))$ times the dye amount in each film $(c(Au-TiO_2))$ divided by the dye amount in pure TiO₂ film $(c(TiO_2))$. Therefore, multiple enhancement = $A(Au-TiO_2)/A'(Au-TiO_2)$, where $A(Au-TiO_2)$ is the measured absorbance for the dye-loaded Au-TiO₂ film.

Figure S8. Electron lifetime as a function of charge density at open circuit.

Figure S9. Structures of dyes MK1 (ref. 1), MK3 (ref.1) and FNE31 (ref.2).

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Dye	Photoanode	$V_{\rm oc}~({\rm mV})$	$J_{\rm sc}$ (mA cm ⁻²)	FF	η (%)
MK1	TiO ₂	782	7.53	0.64	3.77
	Au-TiO ₂	815	10.21	0.68	5.66
MK3	TiO_2	713	7.90	0.75	4.22
	Au-TiO ₂	749	11.95	0.76	6.80
FNE31	TiO ₂	746	6.11	0.75	3.42
	Au-TiO ₂	774	8.73	0.76	5.14

Table S1. Photovoltaic performance parameters for DSSCs based on various dyes and 4 µm films^a.

^a The Au/TiO₂ weight ratio in the Au-TiO₂ film is 0.104wt%.

References

- Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. *Chem. Mater.* 2008, 20, 3993.
- Tomas, K. R. J.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; Chou, P.-T. *Chem. Mater.* 2008, 20, 1830.