SUPPLEMENTARY INFORMATION:

Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics

Timothy P. Osedach^a, Trisha L. Andrew^b, Vladimir Bulović^c*

^a Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.; E-mail:

osedach@mit.edu

^b Department of Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA.

^c Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

1. Synthetic Procedures for OPV Active Layer Materials

Scheme S1. Synthesis procedure for Alq3.

Scheme S2. Synthesis procedure for SQ.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

Scheme S3. Synthesis procedure for DBP.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

Scheme S4. Synthesis procedure for DBP.

Scheme S5. Synthesis procedure for PDPP3T.

Scheme S6. Synthesis procedure for PBDTTPD.

2. Isolation and Purification Procedures

There are generally three phases associated with a particular synthetic step: the reaction itself, isolation (often termed "work-up"), and purification. For example, after a particular synthetic operation is conducted using the necessary reaction conditions and reagents, an aqueous quenching or neutralization step is often necessary to either pacify reactive intermediates or reagents, or neutralize the pH of the reaction from an otherwise acidic or basic state. Such aqueous quenching/neutralization operations are often also accompanied by extraction steps, wherein the desired products of the reaction are isolated, in crude, from the aqueous medium with the use of organic solvents; common organic solvents used for extraction are ethyl acetate, diethyl ether and dichloromethane. The organic solvents are then also dried over a drying agent, such as sodium or magnesium sulfate, to remove major traces of residual water from the quenching/neutralization operation.

The product that is isolated after the aforementioned isolation operations is often crude and must be purified. Depending on the particular molecule, a variety of purification procedures may be employed: distillation or sublimation, recrystallization, or chromatography. Products that are oils at ambient conditions and are thermally-stable are best purified by distillation. Products that have high molecular mass and are thermally-stable may be purified by a combination of recrystallization and sublimation. All other products are usually purified by chromatography using, most often, a gel consisting of micron-sized silica particles.

3. Synthesis Flowcharts for OPV Active Layer Materials

Figure S1. Flowchart describing the synthesis of 1 kg of **CuPc**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Figure S2. Flowchart describing the synthesis of 1 kg of **Alq3**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2013

Figure S3. Flowchart describing the synthesis of 1 kg of **SQ**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Figure S4. Flowchart describing the synthesis of 1 kg of **DBP**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Figure S5. Flowchart describing the synthesis of 1 kg of **PDPP3T**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

Figure S6. Flowchart describing the synthesis of 1 kg of **DTS**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

Figure S7. Flowchart describing the synthesis of 1 kg of **PBDTTPD**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

Figure S8. Flowchart describing the synthesis of 1 kg of **PTB1**. The requisite quantities of reagent (red arrow), solvents (green arrow) and work-up materials (blue arrow) are indicated for each step.

4. Material Costs Used in this Work

Table S1. Material costs used in this work.

Chemical Name	Active Layer Material	Quantity [kg]	Cost [\$/kg]
(1,3-diphenylphosphinopropane)nickel (II) chloride	РЗНТ	0.025	\$8,640.00
1-chloronaphthalene	CuPc	1	\$209.00
1-octanol	PBDTTPD, PTB1	8.27	\$28.30
1,2 dichloroethane	DBP	12.54	\$11.24
1,3 diphenylacetone	DBP	0.1	\$1,140.00
2-aminobenzoic acid	DBP	2	\$61.50
2-bromothiophene	PDPP3T (1), PDPP3T (2) PDPP3T (1),	1	\$379.00
2-hexyldecyl iodide	PDPP3T (2)	0.06685	\$2,468.21
dioxaborolane	PDPP3T (2)	0.456	\$1,085.53
2-thiophenecarboxylic acid	PTB1	0.5	\$152.00
2,2'-bithiophene	DTS	0.025	\$9,280.00
2,3-dichloro-5,6-dicyanobenzoquinone	DBP	0.25	\$2,120.00
2M hexylmagnesium bromide in ether	P3HT	0.772	\$195.60
3-bromothiophene	P3HT	0.5	\$350.00
3-thiophenecarboxylic acid	PBDTTPD, PTB1	0.1	\$1,130.00
3,4-Diaminopyridine	DTS	0.025	\$17,000.00
4,4'-di-tert-butyl-2,2'-dipyridyl	PDPP3T (1)	0.025	\$8,020.00
8-hydroxyquinoline	Alq3	2.5	\$151.60
acenaphthenequinone	DBP	0.1	\$1,735.00
acetic acid	PDPP3T (1), PDPP3T (2), DTS PDPP3T (1), PDPP3T (2)	21	\$18.87
acetic anhydride	PBDTTPD, PTB1	2.16	\$41.44
acetone	Alq3, SQ PDPP3T (1),	12.7	\$36.93
aliquat 336	PDPP3T (2)	0.884	\$170.81
aluminum potassium sulfate dodecahydrate	Alq3	2.5	\$130.80
ammonium chloride	DTS	0.5	\$699.00
ammonium molybdate	CuPc	0.5	\$310.66
amyl alcohol	PDPP3T (1)	20	\$13.05
bis(pinacolato)diboron	PDPP3T (1)	0.5	\$7,080.00
boron trifluoride diethyl etherate	DBP	0.02875	\$1,266.09
bromine	PDPP3T (1), PDPP3T (2), DTS	0.5	\$1,650.00
BT1	DTS	0.005	\$45,000.00
Butanol	SQ	16.2	\$31.48

chloro-1,5-cyclooctadiene iridium(I) dimer	PDPP3T (1)	0.01	\$86,500.00
chloroform	PDPP3T (2), DTS	2.98	\$31.21
chloromethyl methyl ether	PTB1	0.025	\$2,712.00
chlorotrimethyltin	PBDTTPD, PTB1	0.05	\$5,290.00
conc. Ammonium hydroxide	Alq3 PDPP3T (1),	3	\$351.78
copper (I) cyanide	PDPP3T (2)	5	\$52.80
copper (II) chloride	CuPc	1	\$145.00
cyclohexane	SQ	1.56	\$72.76
decanol	PTB1	2.07	\$25.75
di-isopropyl succinate	PDPP3T (1)	0.495	\$409.58
dichloro-bis(2-ethylhexyl)silane	DTS DBP, PDPP3T (1), PDPP3T (2), PBDTTPD, PTB1,	10.7	\$7.06
dichloromethane	DTS, SQ	270	\$9.09
dicyclohexylcarbodiimide	PBDTTPD, PTB1 P3HT, PDPP3T (1), PDPP3T (2), PBDTTPD, PTB1,	2.5	\$155.40
diethyl ether	DTS	4.24	\$78.66
diethyl succinate	PBDTTPD	1	\$61.80
diisobutylamine	SQ	0.74	\$72.03
dimethylamine hydrochloride	PBDTTPD, PTB1 PDPP3T (1), PDPP3T (2),	1	\$68.60
dimethylformamide	PBDTTPD, PTB1 PBDTTPD, PTB1,	192.6	\$20.23
ethanol	DIS	12.6	\$11.42
ethyl acetate	DIS	18	\$38.61
ethyl formate	PBDTTPD	1.84	\$69.57
Ierrocene	DBP PDPP3T (2), PBDTTPD, PTB1,	2	\$140.00
hexanes	DTS, SQ	135	\$7.60
hydrobromic acid 48 wt% in water	P3HT, DTS	2.69	\$40.52
hydrochloric acid	P3HT, PTB1, DTS	4.4	\$38.77
hydrogen peroxide	РЗНТ	5.13	\$17.19
isoamyl nitrite	DBP	0.5	\$245.04
isopropanol	PBDTTPD, PTB1 P3HT, DBP, PDPP3T (1), PDPP3T (2), PBDTTPD, PTB1,	163	\$8.49
methanol	DTS PDPP3T (1), PDPP3T (2),	15	\$6.24
N-bromosuccinimide	PBDTTPD, PTB1	5	\$81.60

	PDPP3T (2), PBDTTPD_PTB1		
n-butyllithium in hexanes	DTS	0.0102	\$3,654.90
N-methylpyrrolidone	PDPP3T (1)	18.504	\$54.58
n-octylamine	PBDTTPD	0.5	\$127.08
N,N,-dimethylaminopyridine	PBDTTPD, PTB1	0.25	\$1,120.00
Na2S2O3 sodium thiosulfate	DTS	2.5	\$62.40
octane	PDPP3T (1)	14.1	\$98.94
p-toluenesulfonyl chloride	PBDTTPD, PTB1	5	\$40.40
Phloroglucinol	SQ	0.1	\$717.00
phosphorus pentasulfide	PBDTTPD	0.5	\$63.02
phthalic acid	CuPc	1	\$69.30
	PDPP3T (1),		
notassium carbonate	PDPP3T (2), prdttpd ptr1	2.5	\$38.18
	PBDTTPD, PTB1,	2.5	φ50.10
potassium hydroxide	DTS	450	\$17.06
notassium phosphata	PDPP3T (1) ,	5	\$70.20
porassium phosphate	DTS	10.6	\$70.20 \$50.05
pyridine	DBP, PDPP3T (1),	19.0	¢J7.75
	PDPP3T (2),		
silion (0 um norticles	PBDTTPD, PTB1,	1	¢075 56
sinca 60 uni particles	PDPP3T (1).	1	\$273.30
sodium	PBDTTPD	0.05	\$1,498.00
sodium carbonate	PTB1, DTS	1	\$115.50
and in an annual de	PDPP3T (1),	1	¢52 (0
	PDPP31 (2)	1	\$33.0U
	PBD11PD, P1B1	12	\$27.38 \$500.00
sodium metaperiodate	PIBI P3HT PDPP3T(1)	0.5	\$590.00
	PDPP3T (2),		
	PBDTTPD, PTB1,	10	*2 0.0 2
sodium sulfate	DTS	12	\$30.92
sodium sulfide	PIBI	0.05	\$7,020.00
squaric acid	SQ CuPc PRDTTPD	0.1	\$6,860.00
sulfuric acid	PTB1	5.49	\$36.07
t-butylmagnesium chloride in ether	P3HT	0.144	\$1,680.56
tBuLi	DTS	1.09	\$833.94
	P3HT, PDPP3T (2),		
tatrahydrofuran	PBDTTPD, PTB1,	16.0	\$40.82
	PBDTTPD, PTB1,	10.9	φ+0.62
tetrakis(triphenylphosphine)palladium	DTS	0.025	\$16,800.00
N,N'-tetramethylethylenediamine	PDPP3T (2)	0.775	\$166.45
thionyl chloride	PBDTTPD, DTS	2	\$128.00
thiophone	PDPP3T (1) ,	0.5	¢01 00
unophene	FDFF51(2)	0.5	J04.8U

toluene	PDPP3T (1), PDPP3T (2), PBDTTPD, PTB1, DTS, SQ	176	\$4.89
	DBP, PBDTTPD,		
triethylamine	PTB1, DTS	1	\$118.00
trifluoroacetic acid	DBP, PBDTTPD	2.5	\$163.20
trimethyltin chloride	DTS PDPP3T (1),	0.05	\$264.50
triphenylphosphine	PDPP3T (2)	2	\$97.50
tris(dibenzylideneacetone)dipalladium	PDPP3T (2)	0.025	\$28,320.00
urea	CuPc CuPc, Alq3, P3HT, PDPP3T (1), PDPP3T(2), PBDTTPD, PTB1,	10	\$8.31
water	DTS	0	\$0.00
zinc (II) chloride	PTB1 PBDTTPD, PTB1,	6	\$235.83
zinc dust	DTS	1	\$83.50

Figure S9. Calculated material cost-per-peak-Watt ($/W_p$) as a function of solar cell efficiency for hypothetical devices incorporating **Alq3,DBP**, **PDPP3T**, **PBDTTPD**, **SQ and DTS**. (a) Includes the cost of reagents, solvents and work-up procedures. (b) Includes only the cost of reagents and solvents. The red dashed lines indicate 0.005 and 0.050-dollars-per-peak-Watt.