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Periodic heating amplifies the efficiency of a thermoelectric 
energy conversion 
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The steady state analytical solution to the efficiency of a thermoelectric 
power generator (TPG) 

For the steady state case a constant heat flux q0 is applied to the left boundary. The heat 
conduction equation in 1D is, 

  
∂2T(x)
∂x2 + ′′′q

k
= 0  (1) 

where k is thermal conductivity and   ′′′q = I 2R AL = I 2 σA2  is the volumetric internal 

joule heating due to a current I flowing through the TPG with resistance R (cross 

sectional area A, thickness L, and electrical conductivity σ). The Peltier effect results in a 

cooling on the hot side and heating on the cold side, captured by qp1 and qp2 in Figure 2. 
Accordingly, the boundary condition on the hot side at x=0 is, 

  
-k dT

dx x=0

= q0 - qp1 - h1 T(0) - T∞⎡⎣ ⎤⎦  (2) 

where q0 is the imposed heat flux and h1 is the heat transfer coefficient on the hot side. 

The Peltier heat flux is   qp1 = T(0)SI A , where S is the Seebeck coefficient. The boundary 

condition on the cold side at x=L is 
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-k dT

dx x=L

= h2 T(L) - T∞⎡⎣ ⎤⎦ - qp2  (3) 

where  h2  is the heat transfer coefficient on the cold side and qp2 is the Peltier heat flux 

  qp2 = T(L)SI A  on the cold side.  The resultant temperature distribution is,   

  
T(x) = ′′′q x2

2k
L
x
−1⎛

⎝⎜
⎞
⎠⎟
− x

L
Th −Tc( ) +Th  (4) 

Where  Th  and  Tc  are the hot side and cold side temperatures.  The power delivered to 

the load with resistance Rl is, 

  
W = I 2Rl =

S Th - Tc( )
R + Rl

⎡

⎣
⎢

⎤

⎦
⎥

2

Rl  (5) 

The total rate of heat flow from the source Q0 is 

  
q0A = Q0 = SITh +

kA
L

Th - Tc( ) - I 2R
2

+ h1A Th - T∞( )  (6) 

where the final term is zero if the hot side is insulated (i.e., h1 is very low).  The 
efficiency is maximized when the ratio of the resistance of the load to that of the 
generator is given by1 

  Rl R = 1+ ZT  (7) 

where   Z =σS2 k and   T = Th +Tc( ) 2 .  With this substitution, the efficiency of the 

thermoelectric device can be derived in terms of  ZT  as, 

  

ηSS =
W
Q0

=
Th - Tc( ) 1+ ZT -1( )
Th 1+ ZT +Tc Th( )  (8) 

Eqn. (8) yields ηSS=4.8% with the TPG properties defined in Table 1, Th=400, and 

Tc=300K.  
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Analytical solution to quasi-steady periodic heating of a TPG  

The transient heat conduction equation in one dimension is, 

  
∂2T(x,t)

∂x2 +
′′′q t( )
k

= 1
α

∂T(x,t)
∂t

 (9) 

where volumetric heat generation term is   ′′′q t( ) = I t( )2 σA2 . A periodic heat flux with 

Peltier cooling   qp1 t( ) = T(0,t)SI(t) A
 
and convective heat loss are assumed at the left 

boundary, 

  
-k dT

dx x=0

= q0 + q1e
iωt - qp1 t( ) - h1 T(0,t) - T∞⎡⎣ ⎤⎦  (10) 

and Peltier heating   qp2 t( ) = T(L,t)SI(t) A
 
and convective heat loss are assumed at the 

right boundary. 

  
-k dT

dx x=L

= h2 T(L,t) - T∞⎡⎣ ⎤⎦ - qp2 t( )  (11) 

To reach an approximate analytical solution the temperature will be represented as the 

superposition of a steady state term   Tss(x) , and periodic terms   ϕ(x,t) where we focus on 

the periodic term at 1ω. In what follows steady state terms are distinguished from the 

total variable by the subscript ss.  

  T(x,t) = Tss(x)+ϕ(x,t)  (12) 

Hence the temperature at x=0 (hot side) is, 

  T(0,t) = Thss +ϕ(0,t)  (13) 

and at x=L (cold side) is, 

  T(L,t) = Tcss +ϕ(L,t)  (14) 

In the quasi-steady low frequency regime, it is reasonable to use Iss as an estimate of the 
amplitude of I(t),  

  I(t) = Iss + Isse
iωt  (15) 

which leads to the following expression for  I(t)
2  
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  I(t)
2 = Iss

2 + 2Iss
2 eiωt + Iss

2 e2 iωt  (16) 

where the final term is at a frequency 2ω, and will be ignored for our solution at 1ω.  

Given the expressions in eqns. (12)-(16), qp1, qp2, and  ′′′q  can be explicitly defined, and 

the periodic component of eqn. (9) at a frequency 1ω is specified by, 

  
∂2ϕ(x,t)
∂x2 +

2Iss
2R

kLA
eiωt = 1

α
∂ϕ(x,t)

∂t
 (17) 

The boundary condition at x=0 from eqn. (10) becomes, 

  
-k dϕ

dx x=0

=
q1 - SThssIss( )

A
eiωt - (SIss

A
+ h1 )ϕ 0,t( )  (18) 

and the boundary condition at x=L from eqn. (11) becomes, 

  
-k dϕ

dx x=L

= - STcssIss

A
eiωt - SIss

A
- h2

⎛
⎝⎜

⎞
⎠⎟
ϕ L,t( )  (19) 

The periodic solution to this problem is 

  
ϕ(x,t) = C1e

(1+i) ω
2α

x
+C2e

-(1+i) ω
2α

x
+

2Iss
2 Rα i

AkLω
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
eiωt  (20) 

Where C1 and C2 are constants defined by substituting eqn. (20) into boundary 

conditions.  We can see that the periodic temperature response is at a frequency 1ω and 

exponentially decays with a length scale 
 
Lp = α π f . 

 

Quasi-steady TPG efficiency 

To determine the TPG efficiency the instantaneous temperature difference between the 

hot and cold side (Δϕ ) must be specified from eqn. (20) as, 

  
Δϕ =ϕ(0,t)−ϕ(L,t) = C1 1− e

(1+i) ω
2α

L⎛

⎝
⎜

⎞

⎠
⎟ +C2 1− e

-(1+i) ω
2α

L⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
eiωt  (21) 

For small ω  (i.e.,
  
Lp  L ), the Taylor expansion of the form  e

ν = 1+ν +ν 2 2!+ν 3 3!...  can 

be used to replace the exponential terms in eqn. (21) as, 
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ω → 0⇒ e

(1+i) ω
2α

L
≅ 1+ (1+ i) ω

2α
L  (22) 

Hence, Δϕ  simplifies to, 

  
Δϕ = (C2 - C1 )(1+ i) ω

2α
Leiωt  (23) 

Substitution of eqn. (22) into the boundary condition at x=0 results in, 

  
(C1 −C2 )(1+ i) ω

2α
−

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

(C1 +C2 )− 2Iss
2Rα i

AkLω
SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟
= − q1 −

SThssIss

A
⎛
⎝⎜

⎞
⎠⎟

k  (24) 

and at x=L results in, 

  

(C1 −C2 )(1+ i) ω
2α

1− SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

L⎡

⎣
⎢

⎤

⎦
⎥

+(C1 +C2 ) ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

2Iss
2Rα i

AkLω
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟
=

STcssIss

Ak

 (25) 

To isolate (C1-C2) so that it can be substituted for in eqn. (23) we begin by multiplying 

eqn. (24) by 
  

ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , 

  

(C1 −C2 )(1+ i) ω
2α

ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

(C1 +C2 ) ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−
2Iss

2Rα i
AkLω

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

ωLi
α

−
SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

SThssIss

kA
−

q1

k
⎛
⎝⎜

⎞
⎠⎟

 (26) 

and eqn. (25) by 
  

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

, 

  

(C1 −C2 )(1+ i) ω
2α

1− SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

L⎡

⎣
⎢

⎤

⎦
⎥

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟
+ (C1 +C2 ) ωLi

α
−

SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

−
2Iss

2Rα i
AkLω

SIss

Ak
−

h2

k
⎛
⎝⎜

⎞
⎠⎟

SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟
=

STcssIss

Ak
SIss

kA
+

h1

k
⎛
⎝⎜

⎞
⎠⎟

 (27) 

then add eqn. (26) and (27) together to get, 
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C2 −C1 =

q1

k
− SThssIss

kA
⎛
⎝⎜

⎞
⎠⎟

ωLi
α

− SIss

Ak
− h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

STcssIss

Ak
SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟
+ 2Iss

2R
Ak

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

(1+ i) ω
2α

ωLi
α

− SIss

Ak
+ h2

k
+ 1− SIss

Ak
− h2

k
⎛
⎝⎜

⎞
⎠⎟

L⎡

⎣
⎢

⎤

⎦
⎥

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (28) 

Such that the expression for Δϕ from eqn. (23) is,  

  

Δϕ =

q1

k
− SThssIss

kA
⎛
⎝⎜

⎞
⎠⎟

ωLi
α

− SIss

Ak
− h2

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

STcssIss

Ak
SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟
+ 2Iss

2R
Ak

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

ωLi
α

− SIss

Ak
+ h2

k
+ 1− SIss

Ak
− h2

k
⎛
⎝⎜

⎞
⎠⎟

L⎡

⎣
⎢

⎤

⎦
⎥

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Leiωt  (29) 

We now assume that  ω ⇒ 0 , such that eqn. (29) simplifies to, 

  

Δϕ =

q1

k
− SThssIss

Ak
⎛
⎝⎜

⎞
⎠⎟

h2

k
− SIss

Ak
⎛
⎝⎜

⎞
⎠⎟
− STcssIss

Ak
SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟
+ 2Iss

2Rα
AkL

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

L
α

⎡

⎣
⎢

⎤

⎦
⎥

− SIss

Ak
+ h2

k
+ 1− SIss

Ak
− h2

k
⎛
⎝⎜

⎞
⎠⎟

L⎡

⎣
⎢

⎤

⎦
⎥

SIss

kA
+ h1

k
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

Leiωt  (30) 

Where the amplitude is independent of ω. Given the fact that conversion efficiency 

  
η = 1

Q
I 2Rl

0

τ

∫ dt ∝ ΔT( )2 , it is clear that it will asymptote to a constant value at low 

frequency, as our results in Figures 4 and 5 demonstrate. 

 

In an ideal TPG no heat is lost by convection from the hot side, such that   h1 ≅ 0  and 

effective convection on the cold side such that   h2 →∞ .  This simplifies eqn. (30) and the 

amplitude ofΔϕ is, 

  
Δϕ =

q1L - SThssIssL A
k +SIssL A

 (31) 

It is our assumption that q1 = q0, and from eqn. (6),  

  
q1 = q0 =

SIssThss

A
+ k

L
ΔTss - Iss

2R
2A

 (32) 

where  ΔTss = Th −Tc .  Substitution of eqn. (32) into eqn. (31) yields, 
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Δϕ =

kΔTss − Iss
2 RL 2A

k +SIssL A
 (33) 

which can be written in terms of Z and  β = 1+ ZT based on, 

  

SIssL
A

=
S2ΔTssL

(1+ β )RA
=

S2σΔTssL
L(1+ β )

=
ZkΔTss

(1+ β )
 (34) 

and 

  

I 2RL
2A

=
S2ΔTss

2L
2(1+ β )2 RA

=
S2σΔTss

2L
2(1+ β )2 L

=
ZkΔTss

2

2(1+ β )2  (35) 

which are substituted into eqn. (33) to yield, 

  
Δϕ =

ΔTss (1+ β )− ZΔTss
2 2(1+ β )

(1+ β )+ ZΔTss

 (36) 

If Z=0, and hence β=1, this results in  Δϕ = ΔTss .  

The conversion efficiency is then written as, 

  

η =
I 2RL

Q
=

S2ΔT 2RL

Q(R + RL )2 =
S2RL

A(R + RL )2

ΔTss
2 + 2ΔTss Δϕ sinωt + Δϕ 2 sin2ωt( )

0

τ=2π ω

∫ dt

(q0 + q1 sinωt)
0

τ=2π ω

∫ dt
 (37) 

where the integrals have been taken over one period ( 2π ω ).  The   sinωt terms integrate 

to zero over these limits, and eqn. (37) is simplified to, 

  
η =

S2RLΔTss
2

A(R + RL )2 q0

1+
(1+ β ) - ZΔTss 2(1+ β )⎡⎣ ⎤⎦

2

2(1+ β + ZΔTss )
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (38) 

Finally, we can express the periodic efficiency in terms of ηss as,  

  
η =ηss 1+

(1+ β ) - ZΔTss 2(1+ β )⎡⎣ ⎤⎦
2

2(1+ β + ZΔTss )
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (39) 
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Numerical solution to periodic heating of a TPG 

For a more accurate solution, presented in Figures 3-6, we have also solved the problem 
numerically.  Our numerical approach uses a central difference approximation to 

  
∂2T(x,t)

∂x2  and explicit time marching, as shown in Figure S1. The procedure yields 

  

∂2Tm , j

∂x2 =
Tm-1, j - 2Tm , j +Tm+1, j

Δx2  (40) 

and, 

  

∂Tm , j+1

∂t
=

Tm , j+1 - Tm , j

Δt
 (41) 

where m is the spatial index and j is the temporal index.  The heat conduction equation 
becomes, 

  

Tm-1, j - 2Tm , j +Tm+1, j

Δx2 + q'''

k
= 1
α

Tm , j+1 - Tm , j

Δt
 (42) 

 

 

Comparison of analytical and numerical solutions to periodic heating of 
a TPG 

A comparison of the numerical and analytical solutions (eqn. (4)) under constant heat 
flux, with the TPG properties in Table 1, are shown in Figure S2.  Numerical and 
analytical solutions match.  In the case of periodic heating, we first compare the 

numerical result against the exact analytical solution (eqn. (20)) when  qp1 = qp2 = q ''' = 0 . 

Figure S3a shows the amplitude of temperature vs. x-position for the analytical 
approach and the numerical under these conditions. The difference between the hot and 

cold side is accurately predicted by eqn. (36) to be ΔTss in this low frequency limit.  In 

this plot, angular velocity is very low,   ω = 0.01Hz . Agreement between these solutions 
validates the numerical model.  

 

The amplitude of temperature vs. x-position when Joule and Peltier terms are 
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considered is shown in Figure S3b.  The analytical estimate from eqn. (20) is compared 
with the numerical solution. Reasonable agreement indicates that our simple analytical 
model can provide reasonable accuracy at low frequency.   

 

 

 
FIG S1. Numerical Model 

 
FIG S2. Comparison of temperature distribution from analytical solution and 
numerical solution 
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FIG S3. Temperature amplitude from numerical and analytical approaches with (a) 
no thermoelectric effects, and (b) with thermoelectric effects. 

 

 

FIG S4.  Ratio of the periodic efficiency to the Carnot efficiency (η/ηCarnot) vs. ZT 

where ηCarnot is based on the actual ΔT for the given duty cycle.  All approximations 

are based on the quasi-steady limit for rectangular (square) wave heating.    
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