Suppression of Geminate Charge Recombination in Organic Photovoltaic Devices with a Cascaded Energy Heterojunction

Chris Groves

School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom.

E-mail: chris.groves@durham.ac.uk

Supplementary information

- Page 2 Figure S1: Factor improvement in η_{GS} with Δ when compared to a donor-acceptor heterojunction
- Page 3 Figure S2: Charge separation efficiency, η_{GS} , as a function of *d* when assuming nearest neighbor hopping and variable range hopping

Figure S1: Factor improvement in charge separation efficiency as a function of electric field and HOMO band-edge offset, Δ for a bilayer (filled) and a blend (open) when Δ = 50meV (red circles), 100meV (green triangles), 150meV (blue diamonds) and 300meV (purple stars). In all cases d = 1nm and $\sigma_D = \sigma_C = 100$ meV.

Figure S2: Charge separation efficiency, η_{GS} , as a function of electric field and *d* in a bilayer when nearest neighbor hopping (symbols) and variable range hopping (thick lines) is assumed. Black denotes a donor-acceptor heterojunction (i.e. $\Delta = 0$), while colors denote donor-cascade-acceptor heterojunctions with $\Delta = 150$ meV, $\sigma_D = 100$ meV, when d = 1 (blue), 3 (purple) and 10nm (green).