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by Filmtronics) were spin-coated on each dummy wafer.  

 Then, the SOD dummy wafers were baked at 150 °C for 20 min. To form the BSF, a 

phosphorus-coated dummy wafer was directly contacted to the bottom side of a 

target wafer so as to degenerately dope boron into the backside.  

 The boron-coated dummy wafer, however, was located in proximity mode on the 

front side of the target wafer to tailor the doping profile of boron diffusion. 

 Simultaneous diffusion doping was carried out in a tube furnace under a mixed 

ambient of N2 and O2 at 900°C for 5 min. Previous work by Jung et al.14 reported 

more details about this procedure. 

 

Step C: Spin-coating of PDMS. 

 A mixed solution (10:1 wt %) of PDMS base (sylgard 184) and curing agent was 

spin-coated on the wire arrays at 4000 rpm for 480 sec.  

 To maintain the height of PDMS uniform, a solution should be stirred enough to 

cover whole sample surface prior to dropping for spin-coating.  

 Then, the coated sample was cured at 80°C for 8 hrs. The vacuum oven was 

necessary to remove air bubbles originated from the mixing process of PDMS base 

with curing agent.  

 A drastic change in temperature should be avoided because the PDMS film can be 

cracked due to the difference in thermal expansion coefficients. Previous work 

performed by Putnam et al.4 reported more details about this procedure. 

 

Step D: PDMS etching 

 Spin-coated PDMS was etched using a solution of tetrabutylammonium fluoride 

(TBAF) mixed with dimethyl fluoride (DMF) in a 1:1 volume ratio. The etch rate 

was 10 μm/min, but was normally sensitive to temperature.  

 A height of PDMS was variable by adjusting dipping time. After dipping in the 

solution, the sample was rinsed in DMF solvent. This process was to remove the 

PDMS residues on wire arrays.  

 Then, cleaning using deionized (DI) water was conducted. This cleaning process was 

important because the PDMS residue was likely remained in between wire arrays. 
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