Electronic Supplementary Information

High Performance Hybrid Solar Cells Sensitized by Organolead Halide Perovskites

Bing Cai,^{a,b} Yedi Xing,^a Zhou Yang,^a Wen-Hua Zhang^{*,a} and Jieshan Qiu^{*,b}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China. E-mail: whzhang@dicp.ac.cn
^b Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. E-mail: jqiu@dlut.edu.cn

Fig. S1 X-ray diffraction (XRD) of (a) CH₃NH₃PbBr₃ and (b) CH₃NH₃PbI₃ deposited on slide glass by spin coating and then annealed at 100°C for 15min.

X-ray diffraction results are in accordance with those in the related references, ^{1, 2} which showed that both the materials synthesized have the perovskite crystalline structures.

Fig. S2 Energy-dispersive X-ray (EDX) spectroscopy of photovoltaic devices: (a) FTO/TiO₂/CH₃NH₃PbBr₃/PCBTDPP and (b) FTO/TiO₂/CH₃NH₃PbI₃/PCBTDPP. Small amount of Au was sprayed on the surface to improve the electrical conductivity of SEM samples.

Fig. S3 (a) SEM image of the cross-section of FTO/TiO₂/CH₃NH₃PbBr₃/PCBTDPP device. (b), (c) TEM images of the TiO₂ particles with CH₃NH₃PbBr₃ nanoparticles deposited on the surface.

Fig. S4 Photo images of the $FTO/TiO_2/CH_3NH_3PbBr_3$ samples with the precursor concentrations of (a) 0.0M, (b) 0.1M, (c) 0.2M, (d) 0.3M, (e) 0.4M, and (f) 0.5M, respectively.

Table S1 Photovoltaic parameters of the hybrid solar cell devices $TiO_2/PCBTDPP/Au$ and $TiO_2/P3HT/Au$, both of which are without the perovskite sensitizer.

Solar cells	J_{sc} (mA/cm ²)	$V_{oc}(V)$	FF	η (%)
TiO ₂ /PCBTDPP/A u	0.036	0.01	0.06	0.00
TiO ₂ /P3HT/Au	0.221	0.54	0.44	0.05

Fig. S5 UV-Vis absorption spectra for the TiO₂/CH₃NH₃PbBr₃, TiO₂/PCBTDPP and TiO₂/P3HT, respectively.

Fig. S6 Current–voltage (J-V) curves for the device of the TiO₂/PCBTDPP/Au and TiO₂/P3HT/Au, and the photovoltaic parameters are given in Table S1.

Table S2 Photovoltaic parameters of the hybrid solar cell of the TiO ₂ /CH ₃ NH ₃ PbI ₃ /Spiro-MeOTAD/Au subjec	t to the
storage at room temperature in the dark.	

Time (h)	J_{sc} (mA/cm ²)	$V_{oc}(V)$	FF	η (%)
4	17.35	0.86	0.43	6.48
30	16.23	0.86	0.36	5.01
71	11.96	0.80	0.35	3.34

References:

- 1 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, *J. Am. Chem. Soc.*, 2009, **131**, 6050. 2 J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, *Nanoscale*, 2011, **3**, 4088.