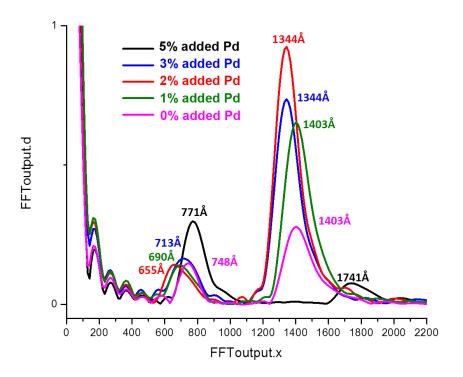

Supplementary Information for

Detection and role of trace impurities in high-performance organic solar cells

Maxim P. Nikiforov¹, Barry Lai², Wei Chen^{3,4}, Si Chen², Richard D. Schaller^{1,5}, Joseph Strzalka², Jörg Maser² and Seth B. Darling^{1,4}*

⁵ Department of Chemistry, Northwestern University, Evanston, IL 60201, USA.


Figure S1. X-ray reflectivity (XRR) data from PTB7/PC₇₁BM blend films used in XRF measurements having various amounts of added Pd(PPh₃)₄ catalyst.

¹ Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.

² X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

³ Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

⁴ Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.

Figure S2. Fourier analysis of XRR data from PTB7/PC₇₁BM blend films used in XRF measurements having various amounts of added Pd(PPh₃)₄ catalyst. These FFT signatures were used to measure the film thickness.