Electronic Supplementary Information:

Biomass-Derived Electrocatalytic Composites for Hydrogen Evolution

Wei-Fu Chen,*^a Shilpa Iyer,^a Shweta Iyer,^a Kotaro Sasaki,*^a Chiu-Hui Wang,^{ab} Yimei Zhu,^b

James T. Muckerman,*^a Etsuko Fujita^a

^a Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States. ^b Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States.

Table S1 Compositions and BET surface area. The proportions of raw materials used for synthesis and the BET surface area of the final products including the $Mo_{0.1}Soy$, $Mo_{0.25}Soy$, Mo_1Soy and Mo_1Soy/RGO catalysts as well as the commercial bulk Mo_2C powder.

Sample	AMo:Soy $(g:g)^a$	BET surface area (m ² g ⁻¹)	
bulk Mo ₂ C		0.9	
Mo _{0.1} Soy	1:10	12.3	
Mo _{0.25} Soy	1:4	7.6	
Mo ₁ Soy	1:1	5.2	
	AMo:Soy:RGO (g:g:g) ^b	_	
Mo ₁ Soy/RGO	1:1:1	254.2	

^{*a*} the weight ratio of raw ammonium molybdate (AMo) to dry soybean powder (Soy). ^{*b*} the proportion among raw ammonium molybdate, dry soybean powder, and reduced graphene oxide powder (RGO).

The specific surface areas of the samples were determined using the Brunauer–Emmett–Teller (BET) method on a Micromeritics ASAP 2020 instrument.

Table S2 The results of the linear combination fitting of the Mo-K edge EXAFS spectra of the Mo_1Soy catalyst in Fig. 3c.

complo	R-factor ^{<i>a</i>} -	Mo	P ₂ C	Mo ₂ N	
sample		weight	error	weight	error
Mo ₁ Soy	0.06407	0.568533	0.012888	0.431467	0.02853

^{*a*} The measure of absolute deviation of the fit from the experimental data.

Table S3 Comparison of the overpotentials (η_{10}) for driving 10 mA cm⁻² and the mass activity of reported non-precious HER catalysts in acidic media.

Catalysts	$\eta_{10} \ ({ m mV})^{a}$	$j@\eta = 150 \text{mV}$ (mA cm ⁻²) ^{<i>a</i>}	Loading (mg cm ⁻²)	Mass activity@ η =150mV (mA mg ⁻¹)
Mo ₁ Soy	177	3.5	1.4	2.5
Mo ₁ Soy/RGO	109	31.6	0.47	67.2
Mo_2C in ref 33	210	1	1.4	0.7
Mo ₂ C/CNT in ref 34	152	9.8	2	4.9
CuMoS ₄ in ref 23	310	0.5	0.0416	12.0
Co-promoted MoS ₃ in ref 27	180	2	0.0366	54.6
double-gyroid MoS ₂ in ref 30	230	1	0.06	16.7
MoS ₂ /RGO in ref 39	160	8.0	1	8.0
MoS ₃ /CNT in ref 26	250	0.50	0.021	23.8
WS ₂ nanosheets in ref 22	150	9	0.285	31.6

^{*a*} The reported overpotentials and current densities were collected under different conditions.

Table S4 Overpotential (η), charge-transfer resistance (R_{ct}), Tafel slope (b_R) and exchange current density ($j_{0,R}$) collected in a H₂-saturated 0.1 M HClO₄ solution for various Mo₂C-based catalysts.

Sample	Mo ₂ C Loading (mg cm ⁻²)	$\eta_{10,\mathrm{i}} \ \mathrm{(mV)}^{a}$	$\eta_{10,\mathrm{f}} \ \mathrm{(mV)}^{b}$	$R_{\rm ct} @ \eta = 100 {\rm mV} \\ (\Omega)$	b_R (mV dec ⁻¹) ^c	$j_{0,R}$ (mA cm ⁻²) ^d
Mo ₁ Soy/RGO	0.47	109	117	9.0	62.7	3.7×10 ⁻²
Mo ₁ Soy	1.4	177	184	31.7	66.4	1.3×10^{-2}
Mo ₂ C/C	2.0	226	390	36.1	59.4	8.1×10 ⁻³
bulk Mo ₂ C	2.0	311	>500	1600	87.6	6.9×10^{-4}

^{*a*} Initial overpotential at 10 mA cm⁻² of cathodic current (j_{Cat}). ^{*b*} Overpotential at 10 mA cm⁻² after potential sweeps for 3000 cycles between -0.3 and +0.63 V vs RHE. ^{*c*} Slopes obtained from the plot of overpotential versus log(R_{ct}^{-1}) in Fig. 7. ^{*d*} Exchange current density calculated by the charge-transfer resistance at zero overpotential.

At sufficiently small η (mass transfer resistance << charge transfer resistance), the exchange

current density, $j_{0,R}$, can be determined via the equation:

$$R_{ct} = \frac{RT}{nFj_{0,R}}$$

where R_{ct} is the charge transfer resistance at zero overpotential, *n* represents the number of electrons exchanged, *F* (96485 C mol⁻¹) the Faraday constant, and *R* (8.314 J mol⁻¹K⁻¹) the gas constant.

Fig. S1 Raw materials and their HER activity. The polarization curves of different biomassderived catalysts collected in hydrogen-purged 0.1 M HClO₄ solution (scan rate 2 mV s⁻¹). The catalysts were made by annealing ammonium molybdate with different biomass sources including ground chili pepper, sedum leaf, sweet gum ball, bamboo stem, peanut and soybean at 800° C under Ar for 2 h.

Fig. S2 XRD spectra and the Rietveld refined spectra based on two phases (not including amorphous carbon phase), with orthorhombic Mo_2C and cubic Mo_2N . The refinement showed that the ratio of β -Mo₂C to γ -Mo₂N is 0.546 to 0.454.

Fig. S3 TGA thermogramms of the Mo₁Soy catalyst in oxygen from 50 to 900 °C.

Thermogravimetric measurements and differential thermal analysis were performed with a Perkin Elmer Diamond thermogravimetric/ differential thermal analyzer. The sample was placed in an alumina sample holder. Measurements in pure oxygen with a flow rate of 100 ml min⁻¹ were carried out over a temperature range of 50–900 °C at a heating rate of 20 °C min⁻¹. The Mo₂C and Mo₂N particles in the Mo₁Soy sample are oxidized and transformed to MoO₃ in this condition.

$$Mo_{2}C + \frac{7}{2}O_{2} \rightarrow 2MoO_{3} + CO$$
$$Mo_{2}N + \frac{7}{2}O_{2} \rightarrow 2MoO_{3} + NO$$
$$\frac{W_{MoO_{3}} + W_{C}}{W_{Mo_{2}C} + W_{MO_{2}N} + W_{C}} = 1.128$$
$$\frac{(W_{MO_{2}N} + W_{MO_{2}C})}{W_{MO_{2}C} + W_{MO_{2}N} + W_{C}} \times 100\% = 31.6\%$$

Thus, the weight percent of the active β -Mo₂C phase in Mo₁Soy is 17.4 wt%. The weight percent of the active β -Mo₂C phase in Mo₁Soy/RGO was determined with the same method as 11.6 wt%.

Fig. S4 The EDX spectra of \mathbf{a} , Mo₁Soy and \mathbf{b} , Mo₁Soy/RGO catalysts showing the presence of a trace amount of potassium. The atomic ratio of K to Mo is included.

Fig. S5 The HER polarization curves of the Mo_1Soy catalyst (1.4 mg Mo_2C cm⁻²), the mixture of the Mo_2C/C and Mo_2N/C (weight ratio $Mo_2C:Mo_2N = 55:45$) with a Mo_2C loading of 1.4 mg cm⁻², and the mixture of Mo_2C/C , Mo_2N/C and KNO_3 (weight ratio $Mo_2C:Mo_2N:KNO_3 = 55:45:10.1$; molar ratio K/Mo =0.103) with a Mo_2C loading of 1.4 mg cm⁻². The curves were collected in a H₂-purged 0.1M HClO₄ solution (scan rate = 2 mVs⁻¹).

Fig. S6 The negative SEM image of the RGO-supported Mo₁Soy catalyst. The inset SEM picture shows that the nanocatalysts are well distributed on a single layer RGO.

Fig. S7 The faradic efficiency for HER under chronopotentiometry at a cathodic current of 10 mA cm⁻². The calculated quantity of hydrogen (-) and the experimentally collected hydrogen (\Box) are compared.

The Faradic yield of HER on the Mo_1Soy/RGO catalyst was estimated by comparing the amount of produced hydrogen during chronopotentiometry at a cathodic current of 10 mA cm⁻² with the calculated hydrogen amount, as shown in Fig. S7. The Faradic yield at the first 10 min was 89.1% and then increased to 99.9% at around 20 min. This phenomenon is similar to the HER activation process reported in ref. 33.

Fig. S8 (a) The two-time-constant model, where R_s is the series resistance, R_{ct} denotes the charge transfer resistance, R_p related to is the porosity the electrode surface, and the double layer capacitance is represented by the elements C_{d1} and C_{d2} . The Nyquist plots of experimental and simulated data for (b) the Mo₁Soy and (c) the Mo₁Soy/RGO catalysts simulated by the two-time-constant model.

A two-time-constant model was used to describe the response of the HER on the Mo₁Soy and Mo₁Soy/RGO electrodes. The model consists of a series resistance, R_s , in series with two parallel branches; one is related to the charge-transfer process (C_{d1} - R_{ct}); another is related to the surface porosity (C_{d2} - R_p). The porosity resistance R_p of Mo₁Soy/RGO and Mo₁Soy obtained by fitting the experimental data is 4.52 and 4.48 Ω , respectively. However, at $\eta = 100$ mV the charge transfer resistance R_{ct} (31.7 Ω) of the Mo₁Soy is much higher than R_{ct} of the Mo₁Soy/RGO catalyst (9.0 Ω). Thus, R_{ct} dominates the reaction.

Fig. S9 HER polarization curves of (a) the Mo₁Soy and Mo₁Soy/RGO catalysts, (b) the Mo₂C/C and (c) the Mo₂N/C nanoparticles before and after potential sweeps (-0.3 ~ +0.63 V vs RHE) for 3000 cycles in 0.1 M HClO₄ solutions (scan rate 2 mV s⁻¹).