Supporting information

Optimizing the Power of Enzyme-based Membrane-less Hydrogen Fuel Cells for Hydrogen-rich H₂/air mixtures

Lang Xu and Fraser A. Armstrong*

Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom

*E-mail: fraser.armstrong@chem.ox.ac.uk

Figure S1. Cyclic voltammograms of the Hyd-1-modified carbon-deposited anode (black) and the BODmodified carbon-deposited cathode (red) under a 78% $H_2/22\%$ air mixture. Other conditions: temperature 25°C, scan rate: 1 mV·s⁻¹, 0.1 M sodium phosphate buffer (pH 6.0).

Figure S2. Dependence of stability of power (%) with time (h = hours) for the 1A/3C fuel cell at an applied constant potential of 0.55 V under a quiescent 78% H₂/22% air mixture at 25°C in 0.1 M sodium phosphate buffer, pH 6.0.