ESI: Electronic Supplementary Information

Methods and Potentials

In this study, the atomistic simulations are based on *interatomic potentials* methods, which rest upon the specification of an effective potential function, which expresses the total energy of the system as a function of the nuclear coordinates. Short range interactions are modeled using a Buckingham potential which is defined as follows:

$$V_{ij}(r_{ij}) = A \exp^{-\frac{r_{ij}}{\rho}} - \frac{C}{r_{ij}^{6}}$$

A, ρ and C are ion-ion parameters and r is the inter-atomic distance. A three body term has been used to take in to account for the angle dependent nature of the PO₄ tetrahedral units. This is defined in terms of a force constant and equilibrium bond angle as follows:

$$V = k(\theta - \theta_0)^2$$

where k is the force constant and θ_0 is the equilibrium bond angle. Since charged defects will polarise other ions in the lattice, electronic polarisation must be incorporated into the potential model. The shell model provides a simple description of such effects (particularly for the polarisable oxygen) and has proven to be effective in simulating the dielectric properties of a range of oxides and fluorides.

Geometry optimisation provides the lowest energy configuration of a given structure through a search of the potential energy surface using efficient minimisation routines. Here, energy minimisation of the crystal lattice is carried out using Newton-Raphson (second derivative) methods using symmetry in the optimisation procedures. For bulk systems, three-dimensional

periodic boundary conditions are normally applied to the simulation box, in effect making the structure infinite in extent.

Table S1. Short-range potential parameters for $Na[Fe,Mn]PO_4$ and Na_2FePO_4F (*-indicates the value for the Na_2FePO_4F only).

a)

Two-body						
Bond	A (eV)		ρ(Å)	$C(eV \cdot Å^6)$		
Na-O	560		0.32	0		
Na-O*	1497.830598		0.287483	0		
Na-F*	2810.326262		0.246520	0		
Fe-O	1105.2409		0.3106	0		
Fe-F*	5609.2542		0.227	0		
Mn-O	1305.25		0.31	0		
P-O	897.2648		0.3577	0		
0-0	22764.3		0.149	44.53		
O-F*	11000.389		0.244179	41.18		
F-F*	1153		0.1365	0		
Three-body						
Bond type	Bond type		·rad ⁻²)	Θ_0 (deg)		
O-P-O		1.3226		109.47		

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2013

Species	Y (e)	K(eV·Å-2)
Na	1	99999.0
Fe	2.997	19.26
Р	5	99999.0
0	-2.96	65.0
F	-2.321	63.57

b)