Synthesis of Mo₂N Nanolayer Coating MoO₂ Hollow Nanostructures as High-Performance Anode Materials for Lithium-Ion Batteries

Jun Liu * ^a, Shasha Tang ^a, Yakun Lu^a, Gemei, Cai * ^a, Shuquan Liang * ^a, Wenjun Wang ^b, and Xiaolong Chen * ^b ^a School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China. ^b Beijing National Laboratory for Condensed Matter physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Figure SI-1. SEM images of the bare MoO₂ hollow nanostructures.

Figure SI-2. Illustrates the calculation method to get the volume fraction of Mo_2N . The average size of the edge is evaluated to be ~ 0.5 nm. The diameter of the MoO_2 nanoparticles is estimated to be about 50 nm. Based on the thickness of the Mo_2N coating layers and the size of the MoO_2 nanoparticles, the fraction of MoO_2 is estimated to be ~ 5.9% in volume, and ~ 8% in weight, using the densities of Mo_2N and MoO_2 which are 9.06 g cm⁻³, and 6.47 g cm⁻³, respectively.

Figure SI-3. N₂ adsorption-desorption isotherms and pore size distribution (inset) of the Mo₂N nanolayer coating MoO₂ hollow nanostructures at 77 K.

Figure SI-4. The discharge capacity as a function of the cycle number for Mo_2N nanolayer coating MoO_2 hollow nanostructures at a current density of 2000 mA g⁻¹.