Electronic Supplemental Information for

High-Efficiency ITO-Free Polymer Solar Cells Using Highly Conductive PEDOT:PSS/Surfactant Bilayer Transparent Anodes

Wenfeng Zhang,^a Baofeng Zhao,^b Zhicai He,^b Xuemei Zhao,^a Haitao Wang,^a Shangfeng Yang,^{*a} Hongbin Wu,^{*b} and Yong Cao^b

^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China

^b Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

Contents

- S1. Electrical properties of PEDOT:PSS/GMS bilayer films
- S2. Determination of the thickness of the GMS layers by surface profilometer
- S3. Determination of the PEDOT-to-PSS ratios by S(2p) XPS results and C(1s) XPS spectra
- S4. SEM images of PEDOT:PSS and PEDOT:PSS/GMS bilayer films
- S5. Performance of different BHJ-PSC devices using PEDOT:PSS/GMS bilayer films as transparent anodes

S1. Electrical properties of PEDOT:PSS/GMS bilayer films

Table S1. Electrical properties of PEDOT:PSS/GMS bilayer films prepared by spin-coating GMS solution

in methanol at different spin-coating speeds.

Electrode	Spin-coating speed of GMS (rpm)	Sheet resistance $(\Omega \text{ sq}^{-1})$	Conductivity (S cm ⁻¹)	
Clevios P	-	2.46×10^{5}	0.41	
	800	275	364	
	1000	285	351	
Clevios P/GMS	2500	352	284	
	4000	606	165	
Clevios PH 1000	-	9.15×10 ⁴	1.09	
	800	100	997	
	1000	98	1019	
Clevios PH 1000/GMS	2500	143	701	
	4000	168	594	

S2. Determination of the thickness of the GMS layers by surface profilometer

Figure S1. Surface profiles of PEDOT:PSS and PEDOT:PSS/GMS bilayer films. The thicknesses of GMS on PEDOT:PSS films are directly calculated by subtracting the sum of the thicknesses of PEDOT:PSS/GMS bilayers with that of the PEDOT:PSS single-layer.

S3. Determination of the PEDOT-to-PSS ratios by S(2p) XPS results and C(1s) XPS spectra

Table S2. The PEDOT-to-PSS ratios of PEDOT:PSS and PEDOT:PSS/GMS bilayer films determined from

S(2p) XPS spectra.

film	PEDOT-to-PSS ratio		
Clevios PH 1000	0.41		
Clevios PH 1000/GMS	0.42		
Clevios P	0.41		
Clevios P/GMS	0.43		

Figure S2. The C(1s) XPS spectra of Clevios P (a), Clevios P/GMS (b) , Clevios PH 1000 (c) and Clevios PH 1000/GMS (d) films.

S4. SEM images of PEDOT:PSS and PEDOT:PSS/GMS bilayer films

Figure S3. SEM images of Clevios P (a), Clevios P/GMS (b), Clevios PH 1000 (c) and Clevios PH 1000/GMS (d) films.

S5. Performance of different BHJ-PSC devices using PEDOT:PSS/GMS bilayer films as transparent anodes

Table S3. Device performances of $P3HT:PC_{61}BM$ BHJ-PSC devices with PEDOT:PSS/GMS bilayer films or ITO as the transparent anodes. For each condition, 10 devices were measured in order to obtain an average value.

Electrode	Active layer	V _{oc} (V)	$\frac{J_{sc}}{(mA cm^{-2})}$	FF (%)	PCE (%)
Glass/Clevios PH 1000	P3HT:PC ₆₁ BM	$0.62 {\pm} 0.003$	0.69 ± 0.17	25 ± 1	0.11 ± 0.05
ITO/Clevios PH 1000	P3HT:PC ₆₁ BM	0.61 ± 0.001	11.42 ± 0.51	54±2	3.75 ± 0.09
Glass/Clevios PH 1000/GMS	P3HT:PC ₆₁ BM	0.61 ± 0.005	12.16 ± 0.46	53 ± 1	3.90 ± 0.24
ITO/Clevios P	P3HT:PC ₆₁ BM	0.61 ± 0.006	11.27 ± 0.24	50 ± 1	3.40 ± 0.15
Glass/Clevios P/GMS	P3HT:PC ₆₁ BM	0.61 ± 0.003	11.49 ± 0.35	47±2	3.25 ± 0.20
Glass/Clevios P	P3HT:PC ₆₁ BM	0.61 ± 0.005	$0.46 {\pm} 0.038$	25 ± 1	0.07 ± 0.02

Figure S4. J–V curves of PTB7:PC₇₁BM BHJ-PSC devices with PEDOT:PSS/GMS bilayer films or ITO as the transparent anodes. The measurements were carried out under AM 1.5G illumination at an irradiation intensity of 51 ± 2 mW cm⁻².

Table S4. Device performances of PCDTBT:PC₇₁BM and PTB7:PC₇₁BM BHJ-PSC devices with PEDOT:PSS/GMS bilayer films or ITO as the transparent anodes. For each condition, 10 devices were measured in order to obtain an average value.

Electrode	Active layer	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
ITO/Clevios P	PCDTBT:PC71BM	$0.88 {\pm} 0.009$	5.91±0.19	60.7±1.1	6.16±0.37
ITO/Clevios PH 1000	PCDTBT:PC71BM	$0.88 {\pm} 0.006$	6.12±0.16	60.1 ± 1.0	6.33±0.18
Glass/Clevios PH 1000/GMS	PCDTBT:PC71BM	0.84 ± 0.005	6.09±0.27	59.0±1.3	5.90±0.34
Glass/Clevios P/GMS	PCDTBT:PC71BM	$0.80 {\pm} 0.008$	5.57±0.15	58.0±0.9	5.04 ± 0.23
ITO/Clevios P Al4083	PTB7:PC71BM	$0.72 {\pm} 0.005$	8.24 ± 0.32	67.4±1.0	7.77±0.31
Glass/Clevios PH 1000/GMS	PTB7: PC ₇₁ BM	0.70 ± 0.004	8.22±0.31	64.8±1.5	7.06±0.36