Supporting Information

Very High Energy Density Silicide-Air Primary Battery[†]

Hua Zhang^{a†}, Xing Zhong^{b†}, Jonathan C. Shaw^{b†}, Linxin Liu^b, Yu Huang^{*a,c} and

Xiangfeng Duan*^{b,c}

Received 5th April 2013, Accepted 8th July 2013

First published on the web 26th July 2013

DOI: 10.1039/c3ee41157e

Experimental Section

Magnesium silicide thin film fabrication and measurement: Magnesium silicide thin films were synthesized in a horizontal tube furnace (Lindberg/Blue M, Thermo Scientific) with a 1-inch diameter quartz tube. An n-type silicon wafer with resistivity of 0.001-0.002 Ω ·cm (University Wafers) was placed on the top of an alumina boat filled with magnesium powder (99.8 %, Alfa Aeser). The alumina boat was then placed in the center of the furnace. Finally, the chamber was heated to 650 °C under argon flow for 1 hour followed by natural cooling to room temperature to obtain a silicon substrate with a layer of blue silicide thin film (~30 µm thick).

Magnesium silicide thin film electrochemical performance measurement: The battery device consisting of a silicide thin film with a film thickness around 30 μ m on the silicon wafer (~1.5 cm × 2 cm, 500 μ m thick), an air diffusion electrode (Quantumsphere Co. Ltd) and a PDMS stamp with an open-through hole (~0.5 cm diameter) was sandwiched tightly by aluminum sheet and plastic plate with open windows at the center of the air electrode to allow air diffusion. An aqueous solution of 30 % potassium hydroxide (KOH) was then injected into the cell as the electrolyte.

Silicide pellet electrochemical performance measurement: 1.5 g of TiSi₂ (99.5 %), $CoSi_2$ (99%) and VSi_2 (99.5%) and ~0.7g of Mg₂Si (99.5%) powders (Alfa Aeser) were pressed to form pellets with ~0.5 inch in diameter and ~0.25 cm in height (29) and annealed under argon flow for 2 h at different temperatures (1,100 °C for TiSi₂

and VSi₂, 900 °C for CoSi₂, 700 °C for Mg₂Si). Discharge measurements were then carried out with the silicide pellet as anode, an air diffusion electrode as cathode and 30 % potassium hydroxide (KOH) as the electrolyte.

Silicide powder capacity measurement: For the capacity measurement, a gel was made by adding poly-acrylic acid (Carbopol 711, BF Goodrich) into KOH solution. The gel was then casted onto a nickel foil (0.025 mm thick, Alfa Aesar) with silicide powder. A full cell is constructed similarly except that the silicon wafer was substituted with the silicide pasted nickel foil with a separator (Celgard 3501) on the top.

Characterization: All the discharge curves were achieved using a Maccor 4304 battery test system. Linear sweep voltammograms and electrochemical impedance spectroscopy were performed with a 3-electrode configuration on VersaSTAT 4 from Princeton Applied Research. The as-synthesized magnesium silicide thin films were characterized by scanning electron microscopy (SEM JEOL 6700) and Energy-dispersive X-ray spectroscopy. X-ray Diffraction(XRD) pattern was carried out by a Bruker Smart 1000K Single Crystal X-ray Diffractometer.

The calculation of theoretical voltages for various metal silicides

Magnesium Silicide

At the Anode: $Mg_2Si + 8OH^2 \rightarrow 2MgO + SiO_2 + 4H_2O + 8e^2$ ($E^0 = 2.09 V$)

At the Cathode:
$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
 (E⁰= 0.40 V)

Overall Reaction: $Mg_2Si + 2O_2 \rightarrow 2MgO + SiO_2$ (E⁰_{cell}= 2.49 V)

Thermodynamic reaction to obtain anode half-cell:

Mg₂Si + 8OH⁻→ 2MgO + SiO₂ + 4H₂O (E⁰ = 2.09 V)

$$\Delta G_{f}^{\circ}(H_{2}O, l) = -237.1 \ kJmol^{-1}$$

 $\Delta G_{f}^{\circ}(SiO_{2}, s) = -856.3 \ kJmol^{-1}$

$$\begin{split} \Delta G^{\circ}_{f}(Mg_{2}Si,s) &= -75.31 \ kJmol^{-1} \\ \Delta G^{\circ}_{f}(OH^{-},aq) &= -157.2 \ kJmol^{-1} \\ \Delta G^{\circ}_{f}(Mg0,s) &= -569.3 \ kJmol^{-1} \\ \Delta G^{\circ}_{R} &= 2\Delta G^{\circ}_{f}(Mg0s) + \Delta G^{\circ}_{f}(Si0_{2},s) + 4\Delta G^{\circ}_{f}(H_{2}0,l) - \Delta G^{\circ}_{f}(Mg_{2}Si,s) \\ &\quad - 8\Delta G^{\circ}_{f}(OH^{-},aq) \\ &= 2 \times -569.3 \ kJmol^{-1} - 1 \times 856.3 \ kJmol^{-1} - 4 \times 237.1 \ kJmol^{-1} + 75.31 \ kJmol^{-1} \\ &\quad + 8 \times 157.2 \ kJmol^{-1} \\ \Delta G^{\circ}_{R} &= -1610.4 \ kJmol^{-1} \\ \Delta G^{\circ}_{R} &= -nfE^{0} \\ &\quad -1610.4 &= -8 \times 96,485 \times E^{0} \\ E^{0} &= 2.09 \ V \end{split}$$

Titanium Silicide

At the Anode: $TiSi_2 + 12OH \rightarrow TiO_2 + 2SiO_2 + 6H_2O + 12e^-$ ($E^0=1.53$ V) At the Cathode: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ ($E^0=0.40$ V)

Overall Reaction: $TiSi_2 + 3O_2 \rightarrow TiO_2 + 2SiO_2$ ($E^0_{cell} = 1.93 V$)

Thermodynamic reaction to obtain anode half-cell:

TiSi₂ + 12OH → TiO₂ + 2SiO₂ + 6H₂O + 12e⁻ (E⁰=1.53 V)

$$\Delta G^{\circ}_{f}(H_{2}O, l) = -237.1 \ kJmol^{-1}$$

$$\Delta G^{\circ}_{f}(SiO_{2}, s) = -856.3 \ kJmol^{-1}$$

$$\Delta G^{\circ}_{f}(TiO_{2}, s) = -888.8 \ kJmol^{-1}$$

$$\Delta G^{\circ}_{f}(OH^{-}, aq) = -157.2 \ kJmol^{-1}$$

$$\Delta G^{\circ}_{f}(TiSi_{2}, s) = -127.0 \ kJmol^{-1}$$

$$\begin{split} \Delta G_{R}^{\circ} &= \Delta G_{f}^{\circ}(TiO_{2},s) + 2\Delta G_{f}^{\circ}(SiO_{2},s) + 6\Delta G_{f}^{\circ}(H_{2}O,l) - \Delta G_{f}^{\circ}(TiSi_{2},s) \\ &- 12\Delta G_{f}^{\circ}(OH^{-},aq) \end{split}$$

$$&= -888.8 \ kJmol^{-1} - 2 \times 856.3 \ kJmol^{-1} - 5 \times 237.1 \ kJmol^{-1} + 127.0 \ kJmol^{-1} + 12 \\ &\times 157.2 \ kJmol^{-1} \end{split}$$

$$\Delta G_{R}^{\circ} &= -1773.3 \ kJmol^{-1}$$

$$\Delta G_{R}^{\circ} = -nfE^{0} \\ -1768.3 &= -12 \times 96,485 \times E^{0} \\ E^{0} &= 1.527 \ V \end{split}$$

Vanadium Silicide

At the Anode: $VSi_2 + 13OH^2 \rightarrow \frac{1}{2}V_2O_5 + 2SiO_2 + \frac{13}{2H_2O} + 13e^2$ (E⁰=1.42 V)

At the Cathode:
$$O_2 + 2H_2O + 4e^2 \rightarrow 4OH^2$$
 ($E^0 = 0.40 \text{ V}$)

Overall Reaction: $VSi_2 + 13/2 O_2 \rightarrow \frac{1}{2} V_2O_5 + 2SiO_2$ ($E^0_{cell} = 1.82 V$)

Thermodynamic reaction to obtain anode half-cell:

$$VSi_2 + 13OH^- \rightarrow \frac{1}{2}V_2O_5 + 2SiO_2 + \frac{13}{2H_2O} + 13e^-$$
 (E⁰=1.42 V)

$$\Delta G_{f}^{\circ}(H_{2}O, l) = -237.1 \ k Jmol^{-1}$$

$$\Delta G_{f}^{\circ}(SiO_{2},s) = -856.3 \ k Jmol^{-1}$$

 $\Delta G^{\circ}_{f}(VSi_{2},s) = -39.37 \ kJmol^{-1}$

$$\Delta G^{\circ}_{f}(OH^{-},aq) = -157.2 \ kJmol^{-1}$$

$$\Delta G_{f}^{\circ}(V_{2}O_{5},s) = -1205.9 \ kJmol^{-1}$$

$$\Delta G_R^\circ = \Delta G_f^\circ(V_2O_5, s) + 2\Delta G_f^\circ(SiO_2, s) + 5\Delta G_f^\circ(H_2O, l) - \Delta G_f^\circ(CoSi_2, s) - 10\Delta G_f^\circ(OH^-, aq)$$

$$= \frac{1}{2} \times -1205.9 \ kJmol^{-1} - 2 \times 856.3 \ kJmol^{-1} - \frac{13}{2} \times 237.1 \ kJmol^{-1} + 39.37 \ kJmol^{-1} + 13 \times 157.2 \ kJmol^{-1}$$
$$\Delta G_{R}^{\circ} = -1776.8 \ kJmol^{-1}$$

 $\Delta G_{R}^{\circ} = -nfE^{0}$

$$-1776.8 = -13 \times 96,485 \times E^0$$

 $E^0 = 1.4166 V$

Cobalt Silicide

At the Anode: $CoSi_2 + 10OH^- \rightarrow CoO + 2SiO_2 + 5H_2O + 10e^-$ (E⁰=1.50 V)

At the Cathode:
$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
 (E⁰= 0.40 V)

Overall Reaction: $CoSi_2 + 5O_2 \rightarrow CoO + 2SiO_2$ (E⁰_{cell} =1.90 V)

Thermodynamic reaction to obtain anode half-cell:

$$CoSi_2 + 10OH \rightarrow CoO + 2SiO_2 + 5H_2O + 10e^-$$
 (E⁰=1.50 V)

$$\Delta G_{f}^{\circ}(H_{2}O, l) = -237.1 \ kJmol^{-1}$$

 $\Delta G^{\circ}_{f}(SiO_{2},s) = -856.3 \ kJmol^{-1}$

 $\Delta G^{\circ}_{f}(CoO,s) = -214.2 \ k Jmol^{-1}$

$$\Delta G^{\circ}_{f}(OH^{-},aq) = -157.2 \ kJmol^{-1}$$

 $\Delta G^{\circ}_{f}(CoSi_{2},s) = -97.6 \ kJmol^{-1}$

$$\Delta G_R^\circ = \Delta G_f^\circ(CoO,s) + 2\Delta G_f^\circ(SiO_2,s) + 5\Delta G_f^\circ(H_2O,l) - \Delta G_f^\circ(CoSi_2,s) - 10\Delta G_f^\circ(OH^-,aq)$$

= $-214.2 \ kJmol^{-1} - 2 \times 856.3 \ kJmol^{-1} - 5 \times 237.1 \ kJmol^{-1} + 97.6 \ kJmol^{-1} + 10 \times 157.2 \ kJmol^{-1}$

$$\Delta G_{R}^{\circ} = -1442.7 \ k Jmol^{-1}$$

 $\Delta G^{\circ}_{R} = -nfE^{0}$

$$-1442.7 = -10 \times 96,485 \times E^0$$

 $E^0 = 1.495 V$

Reference

W. M. Haynes, *Handbook of Chemistry and Physics*, 92nd Edition, CRC Press, 2011.

- 2. J. Barin, Thermochemical Properties of Pure Substances, Wiley-VCH, 1989.
- 3. J. Barin, Thermochemical Data of Pure Substances, Wiley-VCH, 1993.
- 4. M. E. Schlesinger, Chem. Rev. 1990, 90, 607-628.
- 5. X. G. Zhang, Electrochemistry of Silicon and its Oxide, Springer, 2001, 294-297.
- 6. M. J. Madou, Fundamentals of Microfabrication, CRC Press, 2002, 220-228.