Supporting information

On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnO_x/Au multilayers

Wenping Si,^{ab} Chenglin Yan,^a* Yao Chen,^a Steffen Oswald,^c Luyang Han,^a and Oliver G. Schmidt^{abde}

a Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, Dresden, 01069 Germany. Email: <u>c.yan@ifw-dresden.de</u>

b Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Strasse 70, Chemnitz, 09107 Germany.

c Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, Dresden, 01069 Germany. d Center for Advancing Electronics Dresden, Dresden University of Technology, Germany.

e Merge Technologies for Multifunctional Lightweight Structures, Chemnitz University of Technology, Germany.

Figure. S1. (a) A low magnification, and (b) high magnification SEM images of MnO_x/Au multilayers on PET substrate, showing the particle size is around 15 nm.

Figure. S2. X-ray diffraction pattern of the as-prepared MnO_x film, which is confirmed to be a mixture of crystalline MnO_2 and Mn_3O_4 .

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

Figure S3. X-ray photo-electron spectroscopy (XPS) characterization of bare MnO_x film and MnO_x/Au film with 2 nm MnO_x on top of gold to investigate the MnO_x/Au interface. Compared to bare MnO_x film, MnO_x/Au film with 2 nm MnO_x exhibits more surface OH oxygen in O 1s (the part circled by blue dashed ellipse), which is probably due to the gold influence at the interface.

Figure S4. (a) Cyclic voltammetry curves of the MnO_x/Au multilayer micro-supercapacitor measured in 1 M Li₂SO₄ at scan rates from 10 mV s⁻¹ to 1 V s⁻¹. (b) Comparison of volumetric capacitance for MnO_x/Au multilayers measured in aqueous (1 M Li₂SO₄) and gel (H₂SO₄/PVA) electrolyte at scan rates (10, 50, 100, 200, 500 and 1000 mV s⁻¹).

Figure S5. Comparison of the volumetric capacitance at scan rates (10, 50, 100, 200, 500 and 1000 mV s⁻¹) for MnO_x/Au multilayers with thickness of 50 nm, 100 nm, 200 nm. The 50 nmmultilayer is stacked in the order of MnO_x/Au/MnO_x/Au/MnO_x, by three layers of 15 nm-MnO_x and two layers of 2.5 nm-Au. The 100 nm-multilayer is stacked in the same order, by three layers of 30 nm-MnO_x and two layers of 5 nm-Au. Considering thick layer may impede the electrochemical activity of MnO_x, the 200 nm-multilayer is stacked by nine layers, with five layers of 36 nm-MnO_x and four layers of 5 nm-Au layers. As shown in this figure, the 50 nmmultilayer exhibits the highest volumetric capacitance.

Figure S6. Cyclic voltammetry curve of MnO_x/Au multilayer micro-supercapacitor measured at a scan rate of 1 V s⁻¹ after the strain test.