Supplementary Information for "Oxygen-tolerant Coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria"

Data used for Figure 6A

The following table shows calculation for converting productivity reported in the literature into molar productivity

	Titer	Time	Productivity	Molar mass	Molar productivity
Units	mg/L	days	mg/L/d	mmol/mg	µmol/L/d
<i>n</i> -butanol	402	12	33.5	74.12	452
fatty acid	197	2	98.5	172 - 284	411 ^a
3-hydroxy-butyrate	533.4	21	25.4	104.1	244
acetone	36	4	9	58.08	155
fatty alcohol	0.20044	18	0.011	242 - 270	0.0422 ^b

^a Fatty acids of different chain length and saturation were produced. The following table calculates the molar productivity of each fatty acid

Fatty acid	percentage	productivity mg/L/d	molar mass mmol/mg	Molar productivity µmol/L/d
10	0.6	0.6	172.3	3
12	19.9	19.6	200.3	98
14	20.9	20.6	228.4	90
16	43.3	42.7	256.4	166
18:3	1.4	1.4	278.4	5
18:2	1.1	1.1	280.5	4
18:1	1.5	1.5	282.5	5
18	11.3	11.1	284.5	39
Total	100			411

^b Fatty alcohols of different chain length and saturation were produced. The following table calculates the molar productivity of each fatty alcohol.

		productivity	molar mass	Molar productivity
Fatty alcohol	percentage	mg/L/d	mmol/mg	μmol/L/d
16	20	0.0022	242.0	0.00920
18	80	0.0089	270.0	0.03299
Total	100	0.0111		0.0422

*Note productivity of 0.0111 mg/L/d was calculated based on the reported production of 200 μ g/L over 18 days.

The following table shows calculation for converting productivity reported in the literature into carbon molar productivity

	Molar productivity	Numbers of carbons	Carbon molar productivity
Units	μmol/L/d		mmol/L/d
<i>n</i> -butanol	452	4	1.8
fatty acid	411	10-18	6.1
3-hydroxy-butyrate	244	4	1.0
acetone	155	3	0.5
fatty alcohol	0.0422	16 - 18	0.0024