Supporting Information

5.2% Efficient PbS Nanocrystal Schottky Solar Cells

By Claudia Piliego, † Loredana Protesescu, ‡ Satria Zulkarnaen Bisri, †Maksym V. Kovalenko, ‡ and Maria Antonietta Loi†*

†Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen,

9747 AG, The Netherlands

‡Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Str. 10,

Zurich, 8093 and EMPA-Swiss Federal Laboratories for Materials Science and Technology,

Überlandstrasse 129, Dübendorf, 8600, Switzerland.

Email: m.a.loi@rug.nl

Figure S1. FTIR spectra for *PbS_3 washing steps*: the peaks at 2921 cm⁻¹, 2917 cm⁻¹, 2904 cm⁻¹ and 2853 cm⁻¹ are assigned to antisymmetric and symmetric methylene stretch modes ($v_{(as)}CH_2$, $v_{(s)}CH_2$).

Figure S2: FTIR spectra for a) *PbS_4 washing steps* the wavenumbers separation between $v_{as}(COO^{-})$ -1526 cm⁻¹ and $v_{s}(COO^{-})$ -1396 cm⁻¹ is 130 cm⁻¹ and it can be assigned to a bidentate coordination. b) Oleic acid: the peak at 1708 cm⁻¹ corresponds to the C=O stretching of carboxylate in acidic form.

Figure S3. FTIR spectra for <u>a) oleic acid</u>: 2922 cm⁻¹ $-v_{as}$ (C-H in CH₂ and CH₃), 2853 cm⁻¹ $-v_{s}$ (C-H in CH₂), 1707 cm⁻¹ v(C=O)-acidic form, 1460 cm⁻¹, 1413 cm⁻¹ $-\delta$ (C-H in CH₂)-bending and scissoring vibration mode, <u>b) octadecene</u>: 2919 cm⁻¹ $-v_{as}$ (C-H in CH₂ and CH₃), 2851 cm⁻¹ $-v_{s}$ (C-H in CH₂), 1641 cm⁻¹ v(C=C)-, 1466 cm⁻¹ v(C-H in CH₂)-bending vibrations, 1376 cm⁻¹ umbrella type of vibration, <u>c) PbS_4 washing steps</u>: 2954 cm⁻¹ $-v_{as}$ (C-H in CH₂ and CH₃), 2852 cm⁻¹ $-v_{s}$ (C-H in CH₂) v_{as} (COO⁻)-1526 cm⁻¹ and v_{s} (COO⁻)-1396 cm⁻¹.

Figure S4 p-channel and n-channel I_D - V_D output characteristics of FETs of PbS colloidal nanocrystal fabricated using solutions with 3 and 4 washing steps. The electron mobilities, extracted from the transfer curves in saturation regimes are: *PbS_3 washing steps* 1.2 x 10⁻⁵ cm²/Vs and *PbS_3 washing steps* 2 x 10⁻⁵ cm²/Vs.

Figure S5 Absorption spectra of OA-capped PbS nanocrystals dispersed in chloroform.

Figure S6 *J-V* current-voltage characteristics of the devices realized from PbS solutions with 3 and 4 washing steps.

	Voc	$\mathbf{J}_{\mathbf{SC}}$	FF	PCE
	(V)	(mA/cm ²)	(%)	(%)
PbS_3 washing steps	0.42	-15.9	55	3.7
PbS_4 washing steps	0.4	-17.2	55	3.8

Table 1.Comparison of performance parameters between solar cells fabricated from the
solutions of PbS nanocrystal that have been washed three times and four times