Supporting Information

Ordered Mesoporous Carbons and Their Corresponding Column for High Efficient Removal of Microcystin-LR

Wei Teng^{*a*}, Zhangxiong Wu^{*b*}, Jianwei Fan^{*c*} Hong Chen^{*a*}, Dan Feng^{*a*}, Yingying Lv^{*a*}, Jinxiu Wang^{*a*}, Abdullah M. Asiri^{*d*} and Dongyuan Zhao^{**a,b*}

^{*a*} Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, P. R. China.

^b Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia

^c College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R. China ^d Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

For submission to: Energy & Environmental Science

EXPERIMENTAL SECTIONS

Three distinct mesoporous carbons, including 2D hexagonal mesostructure FDU- 15^1 , 3D cubic mesostructure FDU- 16^2 and bimodal mesopore MCS/C³ were synthesized by a solvent evaporation-induced self-assembly (EISA) method with triblock copolymer Pluronic F127 as a structure-directing agent and phenolic resin as a carbon precursor according to previous reports.

Synthesis of carbon precursors. The resol precursors with low-molecular-weight, were prepared from phenol and formaldehyde through the base catalysis. In a typical procedure, 8.0 g of phenol was melted at 42 - 45 °C in a flask and mixed with 0.34 g of 20 wt % NaOH aqueous solution under stirring. After 10 min, 5.24 g of formaldehyde (37 wt %) was added. Then the mixture was heated to 70 °C for further stirring. After 1 h, the mixture was cooled to room temperature. The pH value was adjusted with 2 M HCl solution until it reached a value of ~ 7.0. Subsequently, water was removed by vacuum evaporation at below 45 °C. The ethanol-soluble phenolic resins (resol) were dissolved in ethanol (20 wt %) for the further use.

Synthesis of the bimodal pore mesoporous carbon MCS/C. Its parents, the mesoporous silica-carbon composites (MCS), were firstly prepared by the tri-constituent co-assembly approach. 1.6 g of Pluronic F127 was dissolved in 8.0 g of ethanol with 1.0 g of 0.2 M HCl and stirred for 1 h at 40 °C to obtain a clear solution. 2.08 g of TEOS and 5.0 g of 20 wt % resols were added in sequence. After being stirred for 2 h, the mixture was transferred into dishes to evaporate ethanol at ambient temperature overnight and thermopolymerize at 100 °C for 24 h. The as-made mesostructured silica-resin composites were scraped from the dishes and ground into fine powders. Carbonization was carried out in a tubular furnace at 350 °C for 3 h and at 900 °C for 2 h under nitrogen protection to obtain the mesoporous silica-carbon composites (MCS). The heating rate was 1 °C/min below 600 °C and 5 °C/min above 600 °C. The bimodal pore mesoporous carbon (MCS/C) was recovered after dissolution of the silica component in the composite

sample MCS by 10 wt % HF solution at room temperature, filtration, washing with water and drying at 100 °C.

Synthesis of 2D hexagonal mesoporous carbon FDU-15. Typical synthesis procedure was as following. Firstly, 3.0 g of Pluronic F127 was dissolved in 30.0 g of ethanol to obtain a clear solution and then 15.0 g of 20 wt % phenolic resins ethanolic solution was added. After being stirred for 10 min, the mixture was poured into dishes to evaporate ethanol at ambient temperature overnight and thermopolymerize at 100 °C for 24 h in sequence. The as-made composites were scraped from the dishes into a tubular furnace. Carbonization was carried out at 350 °C for 3 h and at 900 °C for 2 h under nitrogen protection. The heating rate was 1 °C/min below 600 °C and 5 °C/min above 600 °C. Finally, the collected carbonized products were FDU-15.

Synthesis of 3D cubic mesoporous carbon FDU-16. Mesoporous carbon FDU-16 with 3D cubic mesostructure (Im3m) were synthesized by a procedure similar to that of the mesoporous carbon FDU-15, using triblock copolymer F127 (1.00 g), ethanol (15.0 g), resol precursor solution (10.0 g).

Figure S1. Structure and molecular weight of MC-LR.

Figure S2. Outlets and adsorbed MC-LR concentration *versus* the permeation volume of MC-LR feed solution by flowing through the set of blank device without adsorbents filler, with a feed concentration of 2 mg L^{-1} .

Figure S3. SAXS patterns of the mesoporous carbon MCS/C-APS prepared from mesoporous carbon composite after etching silica component by HF solution and treating with APS (a), 2D hexagonal mesoporous carbon FDU-15-*x* after being carbonized at different temperature: (b) 350 °C (FDU-15-350) and (c) 900 °C (FDU-15-900) and 3D cubic mesoporous carbon FDU-16-600 (d).

Figure S4. TEM images (a, b) of the 3D cubic mesoporous carbon FDU-16-600 viewed along the [100] (a) and [110] (b) directions; and HRSEM images (c-f) of the mesoporous carbon MCS/C obtained from the silica-carbon composite after etching silica component (c, d), 2D hexagonal mesoporous carbon FDU-15-900 (e) and 3D cubic mesoporous carbon FDU-16-600 (f).

Figure S5. Nitrogen sorption isotherms (A) and the corresponding pore size distribution curves (B) of the mesoporous carbon MCS/C obtained from the silica-carbon composite after etching silica component (a), 2D hexagonal mesoporous carbon FDU-15-900 (b), and the commercial PAC (c). Nitrogen sorption isotherms (C) and corresponding pore size distributions (D) of the 2D hexagonal mesoporous carbon FDU-15-*x* after carbonization at different temperature: (a) 350 °C (FDU-15-350), (b) 600 °C (FDU-15-600) and (c) 900 °C (FDU-15-900), and 3D cubic mesoporous carbon FDU-16-600 (d).

Figure S6. FTIR spectra of (A) the mesoporous carbon MCS/C obtained from the silica-carbon composite after etching silica component (a), 2D hexagonal mesoporous carbon FDU-15-900 (b) and the commercial powdery active carbon (PAC) (c); and (B) the 2D hexagonal mesoporous carbon FDU-15-*x* after carbonization at different temperature: (a) 350 °C (FDU-15-350), (b) 900 °C (FDU-15-900), and the mesoporous carbon MCS/C-APS prepared from mesoporous carbon composite after etching silica component by HF solution and treating with APS (c).

Fgiure S7. Illustration of the effect on MC-LR adsorption from mesostructure: MC-LR molecules can easily entrance into 2D hexagonal FDU-15 with straight mesopore channels (a) and difficultly into 3D body-centered cubic FDU-16 with spherical cage-like mesopores (b).

Figure S8. Illustration of the force between MC-LR molecules and mesoporous carbon with different surface chemistry: (a) the surface of the mesoporous carbon MCS/C obtained from the silica-carbon composite after etching silica component, (b) MC-LR molecules adsorbed on the surface of the mesoporous carbon MCS/C and (c) MC-LR molecules adsorbed on the surface of mesoporous carbon MCS/C-APS prepared from the mesoporous carbon composite after etching silica component by HF solution and treating with APS.

Sample	name	$S_{\rm BET}(m^2/g)$	$S_{\rm Me}({\rm m}^2/{\rm g})$	D(nm)	$V_t(\text{cm}^3/\text{g})$	X_{MC-LR}^{a} (mg/g)
FDU-16	5-600	690	290	4.8	0.44	14.8^{b}
FDU-15	5-350	537	325	5.2	0.40	22.1
FDU-15	5-600	729	388	5.1	0.57	48.2
FDU-15	5-900	915	382	4.7	0.68	57.3
MCS/C-	-APS	1290	1290	2.3, 4.9	0.96	142

Table S1. Structural, textural parameters and adsorption capacity of MC-LR for the mesoporous carbon adsorbents.

^{*a*} The MC-LR adsorption data on mesoporous carbon adsorbents were carried out at the same test conditions with 2 mg L^{-1} of initial concentration, 0.2 mg of adsorbents, 200 rmp of shaking speed , 4 h of contact time, 25 °C in deionized water.

Adsorbents	Adsorbents	MCs initial	Contact	$q_e(\mu g/g)$	Refs
	Dosage (mg)	Concentration	time		
		(mg/L)/(solution			
		volume)			
MCS/C	0.025	5/(5 mL)	4 h	526000	Our work
PAC	0.1	5/(5 mL)	4 h	64500	Our work
Activatied carbon	0.0005	0.07-3.03/(5 mL)	72 h	200000	[4]
Granular	Coconut shell	0.25/(100 mL)	72 h	14500	[5]
activatied carbon					
Carbon nanotube	10	21.5/(10 mL)	24 h	14800	[6]
Magnetic	1	1.5/(1 mL)	5 min	60	[7]
Nanoparticles					

Table S2. Comparison of MC-LR adsorption capacity of different adsorbents.

References:

- 1 Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu and D. Y. Zhao, *Angew. Chem. Int. Ed.*, 2005, **44**, 7053.
- Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein and D. Y. Zhao, *Chem. Mater.*, 2006, 18, 4447.
- 3 R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu and D. Y. Zhao, *J. Am. Chem. Soc.*, 2006, **128**, 11652.
- 4 P. Pendleton, R. Schumann and S. H. Wong, J. Colloid Interf. Sci., 2001, 240, 1.
- 5 W. J. Huang, B. L. Cheng and Y. L. Cheng, J. Hazard. Mater., 2007, 141, 115.
- 6 H. Yan, A. Gong, H. He, J. Zhou, Y. Wei and L. Lv, *Chemosphere*, 2006, **62**, 142.
- 7 M. Gao, C. Deng, Z. Fan, N. Yao, X. Xu, P. Yang and X. Zhang, *Small*, 2007, **3**, 1714.