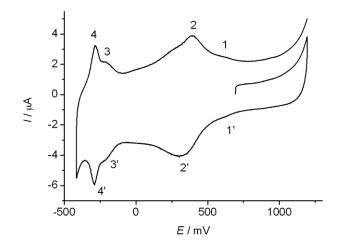
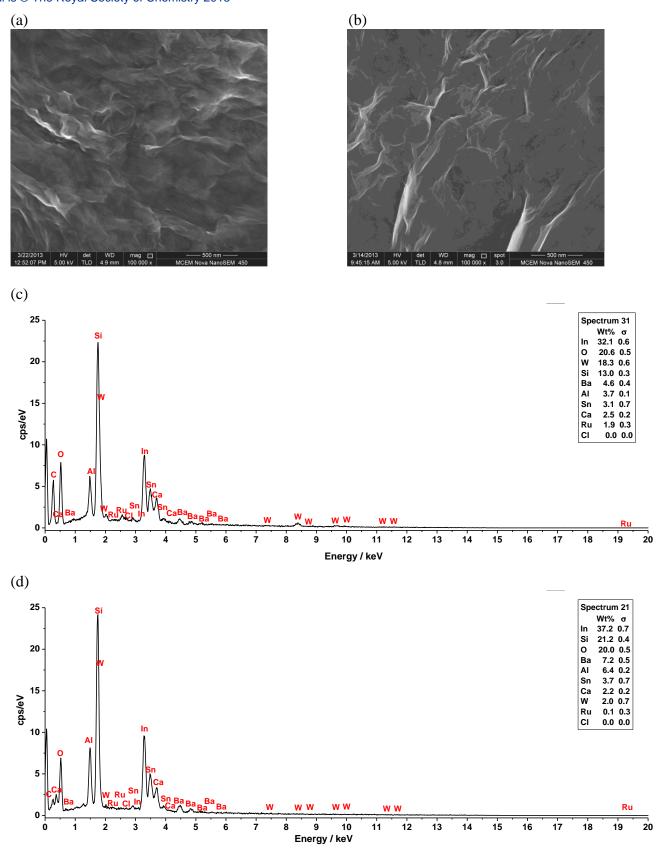
Supporting Information

Graphene-Supported [{Ru₄O₄(OH)₂(H₂O)₄}(γ-SiW₁₀O₃₆)₂]¹⁰⁻ for Highly Efficient Electrocatalytic Water Oxidation

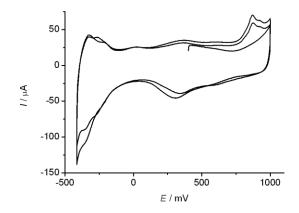

Si-Xuan Guo,^a Yuping Liu,^a Chong-Yong Lee,^a Alan M. Bond,^{*a} Jie Zhang,^{*a} Yurii V. Geletii,^b

Craig L. Hill*^b

^a School of Chemistry, Monash University, Clayton, Vic 3800, Australia, E-mails:


alan.bond@monash.edu, jie.zhang@monash.edu

^b Department of Chemistry, Emory University, Atwood Hall 525, Atlanta, GA 30322, USA, E-mail: <u>chill@emory.edu</u> Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013


Figure S1. Cyclic voltammogram obtained in 0.5 M H_2SO_4 with a wet graphene modified electrode (details given in text). Scan rate: 50 mV s⁻¹.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2013

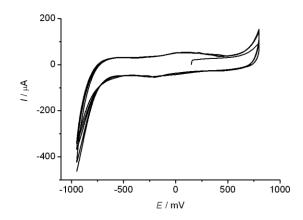


Figure S2. SEM images and EDX spectra obtained from a **1**–graphene modified electrode (a and c) and a **1**–dry graphene modified electrode (b and d).

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

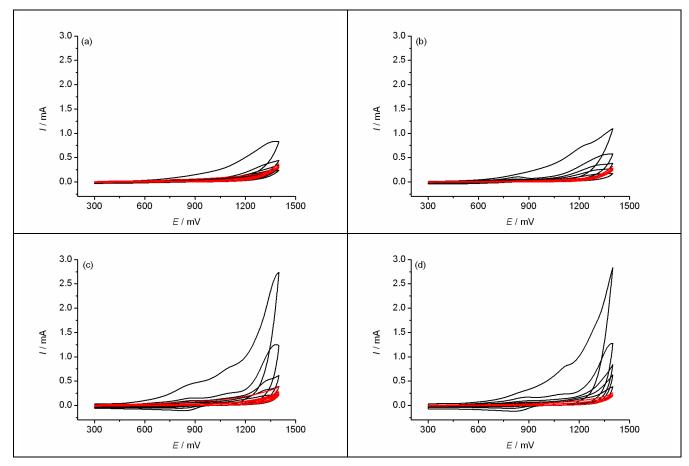
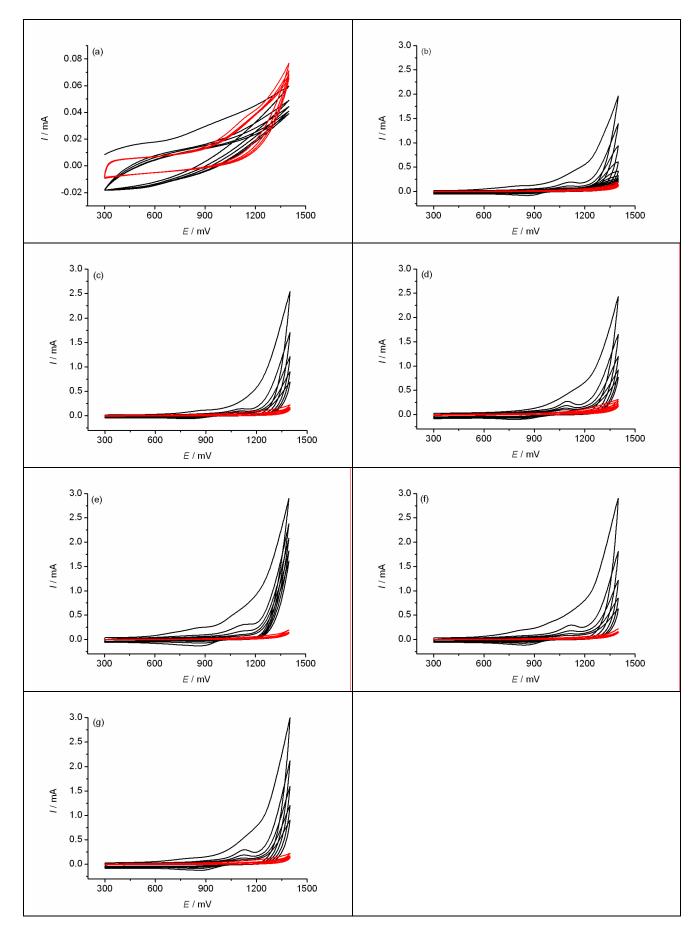


Figure S3. Cyclic voltammograms obtained with a **1**–graphene modified electrode in 0.5 M H₂SO₄. Scan rate: 50 mV s⁻¹. Graphene deposition: 30 cycles of potential between 0 and -1.4 V (vs. Ag/AgCl, 3 M NaCl) in 1 mg ml⁻¹ graphene oxide (0.05 M Na₂HPO₄) at a scan rate of 50 mV s⁻¹.


Figure S4. Cyclic voltammograms obtained with a 1–graphene modified electrode in 0.1 M borate buffer containing 1 M Ca(NO₃)₂, pH 7.50. Scan rate: 50 mV s⁻¹. Graphene deposition: 30 cycles of potential between 0 and -1.4 V (vs. Ag/AgCl, 3 M NaCl) in 1 mg ml⁻¹ graphene oxide (0.05 M Na₂HPO₄) at a scan rate of 50 mV s⁻¹.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

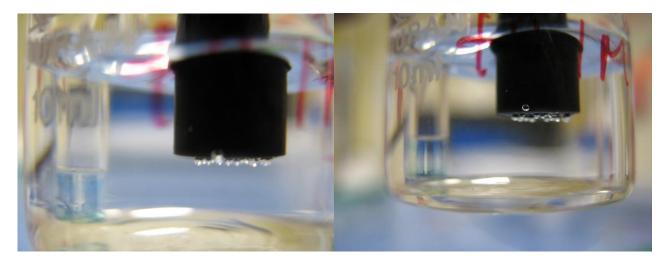


Figure S5. Electrocatalytic water oxidation using a 1–graphene modified electrode (—) or a graphene modified electrode (—) in 0.1 M sodium phosphate buffer, pH 7.50, in the absence (a) and presence of additional supporting electrolyte (b) 0.1 M LiClO₄, (c) 1 M NaNO₃ and (d) 1 M KNO₃.

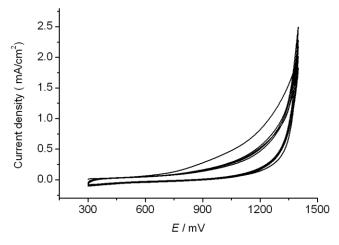

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S6. Electrocatalytic water oxidation using a 1–graphene modified electrode (—) or a graphene modified electrode (—) in 0.1 M sodium borate buffer, pH 7.50 in the absence (a) and presence of additional supporting electrolyte (b) 1 M LiNO₃, (c) 1 M NaNO₃, (d) 1 M KNO₃, (e) 1 M Ca(NO₃)₂, (f) 1 M Mg(NO₃)₂ and (g) 2 M NaNO₃.

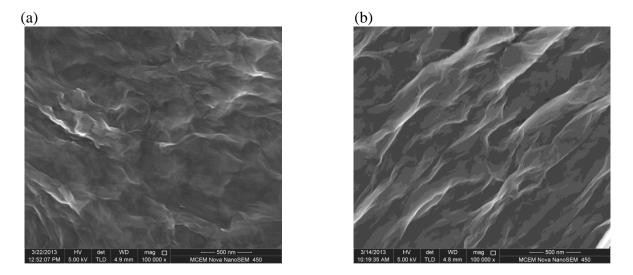


Figure S7. Photographs showing oxygen gas bubbles formed after the potential was cycled 5 times between +300 and +1400 mV vs. Ag/AgCl at a scan rate of 50 mV s⁻¹ when using a **1**–graphene modified GC electrode with 0.1 M sodium borate buffer (pH 7.50) containing 0.1 M LiClO₄ as the aqueous supporting electrolyte.

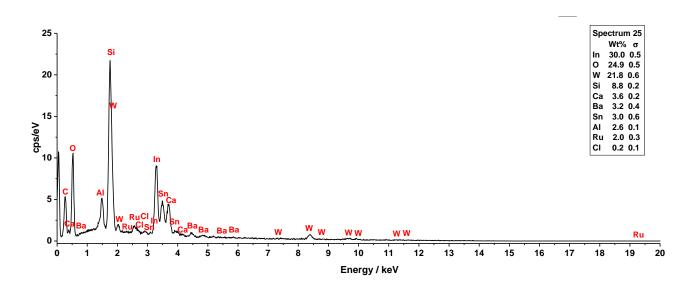


Figure S8. Electrocatalytic water oxidation using a 1–dry graphene modified electrode in 0.1 M sodium borate buffer, pH 7.50 with 1 M Ca(NO₃)₂ as the additional supporting electrolyte (5 cycles of potential). Scan rate: 50 mV s⁻¹.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2013

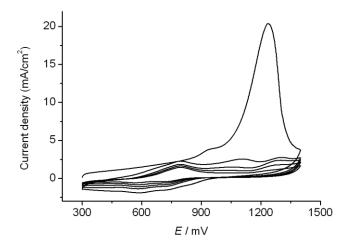


Figure S9. SEM images of a 1-graphene modified ITO electrode taken before (a) and after (b) a constant potential electrolysis at 1.3 V for 500 s. For better comparison, only half of the 1-graphene modified ITO electrode was in contact with the electrolyte solution during electrolysis. SEM images were taken at both electrolyzed and un-electrolyzed parts of the modified electrode.

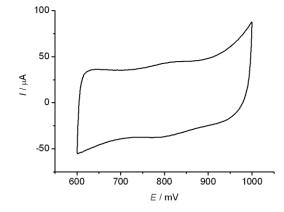


Figure S10. EDX spectrum of a **1**–graphene modified ITO electrode taken after the control potential electrolysis at 1.3 V for 500 s.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

Figure S11. Cyclic voltammogram obtained at a RuO_2 -graphene modified glassy carbon electrode (fabricated using drop casting method with 5 μ L of 2.7 mg/ml RuO_2). Experimental conditions are the same as Figure 3.

Figure S12. Cyclic voltammogram of 1–graphene modified RRDE electrode obtained in 0.1 M HCl containing 1 M Ca(NO₃)₂, scan rate: 50 mV s⁻¹.