Supporting information

on

Black Anatase Titania Enabling Ultra High-Rate Cycling for Rechargeable Lithium Batteries

by

Seung-Taek Myung^{a,b,z}, Masaru Kikuchi^b, Chong Seung Yoon^c, Hitoshi Yashiro^b, Sun-Jae Kim^a, Yang-Kook Sun^{d,z}, Bruno Scrosati^{e,z}

^aDepartment and Institute of Nano Engineering, Sejong University, 98 Gunja-dong,

Gwangjin-gu, Seoul 143-747, South Korea

^bDepartment of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate

020-8551, Japan

^cDepartment of Materials Science and Engineering, ^dDepartment of Energy Engineering,

Hanyang University, Seoul 133-791, South Korea

^eDipartimento di Chimica, Università "La Sapienza", 00185 Rome, Italy

^z Corresponding author

E-mail: smyung@sejong.ac.kr; yksun@hanyang.ac.kr; bruno.scrosati@uniroma1.it

S-Figure 1. (a) XRD patterns of light yellow gel heated at various temperatures for 5 h in Ar atmosphere; (b) light yellow gel varying HF concentration heated at 400 $^{\circ}$ C for 5 h in Ar atmosphere.

Dissolution of Ti^{IV} (TiCl₄ (IV)) readily produces the Ti^{3+} ion in acidic media below pH 2 (here, HF was used) [21]. In course of the synthesis, urea ((NH₂)₂CO) was added to delay hydrolysis of Ti^{4+} to Ti(OH)₄ in the present work. Transparent light yellow gel is received after evaporation of the solution at 80 °C, and consequent heating of the resultant at 200 °C leads to dark yellow powders with low crystallinity (5h in Ar, S-Fig. 1a). Further heat treatments at elevated temperatures, surprisingly, alter the colors of the products, gray at 300 °C and black at 400 – 600 °C, and the resulting crystallinity for X-ray diffraction (XRD) patterns is progressively developed with temperatures. Also, the crystallinity and colors of the powders are dependent on the added amount of HF in the starting solution (S-Fig. 1b). For comparison, the calcination was also performed in air atmosphere (400 °C for 5 h). Products produced in air and Ar exhibit a typical anatase type TiO₂ as confirmed in X-ray diffraction (XRD) patterns (Fig. 1a and S-Fig. 1). Besides, the powders obtained in air shows the same white color as ordinary anatase TiO₂.

S-Figure 2. XPS spectrum of the black anatase TiO_2 heated at 400 °C for 5 h in Ar: HF concentration was (a) 0.1 mol and (b) 0.3 mol for the starting solution.)

From the XPS specturum, compared with the simulated Ti^{3+} ($Ti^{III}N$, blue line) and Ti^{4+} ($Ti^{III}O_2$, red line) spectrua, the calculated content of the trivalent Ti is found to be 2.1 % (for the 0.1 mol HF starting solution) and 7.2 % (for the 0.3 mol HF starting solution) present in the surface region, implying that much acidic environment from solution gives rise to the further formation of the trivalent Ti.

S-Figure 3. SEM images of black anatase TiO_2 heated at 400 °C for 5 h in Ar: (a) low and (b) high magnification; TEM bright-field images: (c) low (inset: SAD pattern) and (d) high magnification.

SEM images display that the synthesized TiO_2 powders are agglomerates and they are nanoparticles. TEM images also reveals that the particles are high agglomerated showing polycrystalline diffraction pattern.

S-Figure 4. Comparison of Cls XPS spectra of white anatase TiO₂, black anatase TiO₂, and carbon-coated spinel $Li_4Ti_5O_{12}$: (a) before Ar⁺ etching and (b) after Ar⁺ etching for 10 min (corresponding to 2.7 nm in depth for the standard SiO₂ powders) in N₂ atmosphere.

The above data represent XPS C1s spectra for both white and black anatase TiO₂. Carboncoated $\text{Li}_4\text{Ti}_5\text{O}_{12}$ was also added to compare the presence of carbon on the surface. Airformed carbon layers (C with N, S, and O) are mainly observed in range of 284 - 288 eV for both black and white anatase TiO₂ before Ar⁺ etching. Another peak observed at 288 - 291eV would be ascribed to the carbonate layer formed in air. In comparison with the carboncoated $\text{Li}_4\text{Ti}_5\text{O}_{12}$ (carbonized from pitch showing high intensity of G-band in Raman spectroscopy), carbon-derived peak is evident at 284.5 eV. Furthermore, carbide-related trace is not found in range of 280.5 - 283 eV both black and white anatase TiO₂ before and after Ar⁺ etching for 10 min corresponding 2.7 nm in depth. The above results indicate that carbon is not doped in the black anatase TiO₂ nor not coated on the surface of black anatase TiO₂.

Forn	nula		TiO ₂					
Crystal	system		Tetragonal					
Space group		$I4_1/amd$						
Atom	Site	X	Y	Ζ	g	B/\AA^2		
Ti	4b	0	0.25	0.375	1	0.8		
O	8e	0	0.25	0.165(3)	1	0.8		
<i>a-</i> axis / Å		3.7887(2)						
<i>c-</i> axis / Å		9.4894(7)						
Ti-O1 / Å		1.9327(7)						
Ti-O2 / Å		1.9956(16)						
R _{wp} / %		11.1						
R _p / %		8.90						

S-Table I. Rietveld refinement results of XRD pattern for TiO_2 calcined at 400 °C for 5 h in Air (white).

S-Table II. Rietveld refinement results of XRD pattern for TiO_2 calcined at 400 °C for 5 h in Ar (black).

Forn Crystal	nula system		TiO ₂ Tetragonal					
Space group		$I4_1/amd$						
Atom	Site	X	Y	Ζ	8	B / \AA^2		
Ti	4b	0	0.25	0.375	1	0.8		
0	8 <i>e</i>	0	0.25	0.164(4)	1	0.8		
<i>a</i> -axis / Å		3.8038(3)						
<i>c</i> -axis / Å		9.5148(7)						
Ti-O1 / Å		1.9382(7)						
Ti-O2 / Å		1.9991(16)						
-	1							
$R_{ m wp}$ / %		12.9						
$R_{ m p}$ / %			9.29					

S-Figure 5. ToF-SIMS spectrum for the white anatase TiO₂ heated at 400 °C for 5 h in air.

It is evident that the white anatase TiO₂ does not show any fragment related with the Ti-N-O-H bond, which is identified as TiN_4^+ (m = 104), TiN_4H^+ (m = 105), and TiN_4OH^+ (m = 121) in the black anatase TiO₂.

S-Figure 6. ToF-SIMS spectra of (a) white anatase TiO_2 heated at 400 °C for 5 h in air and (b) black anatase TiO_2 heated at 400 °C for 5 h in Ar.

It is further demonstrated by ToF-SIMS data that the present black anatase is carbon-free product, because carbon-related fragments such as C⁺ (m = 12), C₂⁺ (m = 24), and C₂H⁺ (m = 25) (See Fig. b), are not detected in the spectra (see Figure S-6b). Provided that they present, the resulting spectra should be notable like N-related fragments, N⁺ (m = 14), NH⁺ (m = 15), N₂⁺ (m = 28), N₂H⁺ (m = 28) (see Figure S-5b). On the contrary, these fragments are not perceived for the white anatase TiO₂(see Figure S-6a).

S-Figure 7. Comparison of Nls XPS spectra of white anatase TiO_2 and black anatase TiO_2 , and carbon-coated spinel $Li_4Ti_5O_{12}$: (a) before Ar^+ etching, (b) after Ar^+ etching for 10 min (corresponding to 2.7 nm in depth for the standard SiO₂ powders) in N₂ atmosphere, and (c) digital camera image of white anatase TiO_2 after Ar^+ etching for 10 min in N₂ atmosphere.

It is evident for the white anatase TiO₂ that only contaminates layer, probably NO_x formed in air, is found in range of 399 - 401 eV. Meanwhile, nitride-related layer (395 - 398 eV) and contaminates layer (399 - 401 eV) with ammonium salt (NH₄⁺, 401 - 404 eV) are found for the black anatase TiO₂ in S-Fig. 7a, confirming the presence of TiN₄H⁺ fragment in ToF-SIMS data (shown in Fig. 2a). Therefore, the absence of TiN₄H⁺ fragment in ToF-SIMS data (S-Figs. 5 and 6) is proved in the XPS spectrum for the white anatase TiO₂ that does not show the binding energy of ammonium salt (NH₄⁺, 401 - 404 eV) in S-Fig. 7b.

Since Ar^+ etching was carried out in N₂ atmosphere, adhesion or incorporation N element is possible so that the white surface was changed to black as shown in S-Fig. 7c. For the reason, nitride-related peak is observed for the white anatase TiO₂. Also, one can able to understand the ready formation of the trivalent Ti after the Ar^+ etching in N₂ atmosphere (see S-Fig. 7b). Again, the above XPS data clarify the presence of Ti-N-H bond in the black anatase TiO₂.

S-Figure 8. Continuous charge and discharge curves of black anatase TiO_2 heated at 400 °C for 5 h in Ar: (a) starting HF concentration: 0.1 mol and (b) 0.3 mol.

Electronic conductivity is also dependent on the starting HF content, since the acidity of the starting solution affect the formation of trivalent Ti: the lower solution pH, the higher trivalent Ti concentration in the black anatase TiO₂, as is found in the XPS data (see S-Fig. 2). As a result, the electronic conductivity is improved from $1.5 \times 10^{-3} \text{ S cm}^{-1}$ for the gray anatase TiO₂ (for the 0.1 mol HF starting solution) to 8.9 x $10^{-2} \text{ S cm}^{-1}$ for the black anatase TiO₂ (for the 0.3 mol HF starting solution)).Since the formation of the trivalent Ti is favored in much acidic environment, here 0.3 mol HF added (S-Fig. 5b), the black anatase TiO₂, which exhibits black color in S-Fig. 1b, delivers high capacity and superior retention at 100 C-rates (20 A g⁻¹) charge and discharge test.