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1 Introduction

This supplementary information contains a list of terms and variables used in calculating the system scale energetics
of storing electrical energy from wind and solar resources (Table 1). We expand our derivation of grid energy intensity
and the energy return on investment ratios for energy resources paired with storage. We list and comment on the
resource technology and storage technology life cycle assessment (LCA) data used to calculate our results contained
in the main text.

2 Expanded derivations of εg and EROIgrid

In this study we employ two ratios taken from net energy analysis: Energy Return on Investment (EROI) and energy
intensity1,2. Energy quality depends on its form, so even though EROI and energy intensity are dimensionless we
define them in terms of electrical energy. EROI ratios follow our intuition that bigger numbers are better; we use EROI
on the axes of plots contained in our main text. We find energy intensity ratios to be less cumbersome in deriving
the energetics of generation resources paired with storage; we use energy intensity ratios to build our theoretical
framework.

For generation technologies, energy intensity, εr, is a ratio of the amount of electrical energy investment per unit of
electrical energy return. This ratio is an average over the entire life of a technology. For energy generation technologies
(wind turbines, solar PV), we obtained energy intensity values from the literature as detailed in section (4).

For storage technologies, the energy returned–that is, the electrical energy withdrawn [e.g. kWh]–depends on the
total number of charge-discharge cycles, λ [# cycles], the fractional depth-of-discharge, D, that allows λ cycles to be
achieved, and the round-trip AC-AC efficiency of the technology, η [e.g. kWhout/kWhin]. As such, a storage energy
intensity is defined as

εs =
εe
ληD

(1)

where εe is the embodied electrical energy per unit of electrical energy storage capacity.
Consider a simple power grid with a renewable resource acquisition technology like wind or PV with energy intensity

εr and a storage technology with an energy intensity εs. A fraction of the energy passes through storage, φ and the
remaining energy, (1 − φ), directly powers the grid. Figure 1 shows a diagram of the energy inputs and outs of this
power grid.
Starting at the resource, εr units of electrical energy are embodied per unit of electrical energy generated. This unit
is then partitioned. φ goes into storage and (1− φ) goes directly to the power grid. The per cycle energy input into
the storage device,

Eins =
φεe
λD

, (2)

depends on the embodied electrical energy per unit electric storage capacity of the device, εe, the devices depth-of-
discharge, D, and how many cycles εe is divided among, λ. Note Eins to storage is scaled by φ. This means that
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Figure 1 A schematic of an renewable electricity generation technology and energy storage system delivering electrical energy
to the power grid. Terms within technologies are the energy inputs per unit output. Flow lines depict electricity outputs.

storage is used in an optimum fashion and that precisely the storage capacity required is the storage capacity built.
Casting Eins in terms of εs,

Eins = φηεs. (3)

The fraction of energy that enters storage φ is reduced by the round-trip AC-AC efficiency of the storage device and
exits storage as Eouts = ηφ. At the power grid we sum the energy inputs for the fraction, (1− φ), that goes directly
to the grid and the fraction that passes through storage, φ. The energy inputs are divided by the energy outputs to
obtain the system wide energy intensity, εg. The energy inputs are

Eing = εr + φηεs. (4)

The sum of energy outputs directly from generation and from storage are

Eoutg = (1− φ) + ηφ. (5)

Therefore εg is

εg =
Eing
Eoutg

=
εr + φηεs
1− φ+ ηφ

. (6)

2.0.1 In terms of EROI

In the main text, EROI, ESOIe and EROIgrid are used to build the axes and plot lines of figures 3, 4 and 5.
These figures show three important results: combinations of EROI, ESOIe and φ that lead to favorable storage or
curtailment energetics, resultant EROIgrid when storage is employed, and requisite cycle life for batteries to yield
better net energetics over curtailment. By definition EROIgrid is the inverse of εg. Using equation 6 we arrive at
EROIgrid:

EROIgrid =
1− φ+ ηφ

εr + φηεs
. (7)

and similarly, εr = 1
EROI and εs = 1

ESOIe
, so in terms of EROI and ESOIe,

EROIgrid =
1− φ+ ηφ
1

EROI + ηφ
ESOIe

. (8)
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Symbol Units Name Notes

Energy intensities

εr

[
kWhe
kWhe

]
renewable technology intensity embodied electrical energy

per unit electricity generated

εs

[
kWhe
kWhe

]
storage technology intensity cradle-to-gate embodied electrical energy

per unit electrical energy from storage
εs = εe

ληD = 1
ESOIe

εc

[
kWhe
kWhe

]
curtailed renewable technology intensity εc = εr

(1−φ)

εg

[
kWhe
kWhe

]
power grid intensity εg = εr+ηεsφ

1−φ+φη

Energy Returned on Investment Ratios

EROI
[
kWhe
kWhe

]
renewable technology EROI electrical energy generated

per unit of embodied electrical energy
EROI = 1

εr

ESOIe

[
kWhe
kWhe

]
energy stored on energy investment electrical energy delivered from storage

per unit of embodied electrical energy

ESOIe = ληD
εe

EROIcurt

[
kWhe
kWhe

]
curtailed renewable technology EROI electrical energy generated less curtailment

per unit embodied electrical energy
EROIcurt = (1− φ)EROI

EROIgrid

[
kWhe
kWhe

]
power grid EROI electrical energy generated and stored

per unit embodied electrical energy

EROIgrid = 1−φ+ηφ
1

EROI+
ηφ

ESOIe

Variables

εe

[
kWhe
kWhe

]
storage cradle-to-gate embodied energy cradle-to-gate embodied electrical energy

per unit of electrical energy storage capacity
λ [#] cycle life total number of charge-discharge cycles

at a specific depth-of-discharge
D [—] depth-of-discharge the fraction of a storage technologies capacity

that undergoes charge and discharge each cycle
η [—] storage technology’s AC-AC efficiency storing and delivering electrical energy

from and to the power grid

Table 1 A table listing terms and variables used in calculations.
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2.1 EROI break-even between storage and curtailment

A simple power grid consisting of renewable generation and energy storage has an energy intensity of εg (equation 6).
Assuming if fraction φ of a generation resource’s energy is not stored, it is curtailed, curtailment of a resource reduces
its energy intensity to

εc =
εr

(1− φ)
. (9)

By setting εc = εg we establish a decision metric that determines when, form a net energy perspective, a resource
should be stored or not stored as a function of the variables involved: εr, εs, and φ. Is it better to curtail or store? Is
it better to invest εr and get back (1− φ), or is it better to invest (εr + ηφεs) and get back (1− φ+ ηφ)? Expanding
εc and εg using equations 9 and 6,

εr
(1− φ)

=
εr + φηεs
1− φ+ ηφ

. (10)

Multiplying through by (1− φ)(1− φ+ φη),

εr − φεr + φηεr = εr + φηεs − φεr − φ2ηεs. (11)

Cancelling terms from both sides,

φηεr = φηεs − φ2ηεs. (12)

Finally, dividing through by φ and rearranging,

εr
εs

= 1− φ, (13)

and in terms of EROI and ESOIe as shown in the main text,

ESOIe
EROI

= 1− φ (14)

When this equality holds, curtailment and storage yield the same grid scale EROI. Otherwise, from an energy efficiency
perspective, one of two conditions exists:

ESOIe
EROI

⇒

{
store if > 1− φ
curtail if < 1− φ.

(15)

This inequality can be rearranged to probe individual variables. For example, to determine what minimum ESOIe is
required to achieve a net energy gain over curtailment then following arrangement is employed,

ESOIe >
1− φ
EROI

(16)

Individual variables can be expanded to further probe the effects that technological attributes have on the decision
to store or curtail. In figure 5 of the main text we determine the minimum cycle required by electrochemical storage
technologies. Expanding ESOIe and rearranging equation 16, the minimum cycle life requirement is

λ >
εe(1− φ)

(ηD)EROI
. (17)
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3 Present day rates of curtailment

Table 2 lists the amount of energy curtailed and the percentage of potential wind power curtailed for several power
generation regions. Curtailment rates are expected to increase as wind and solar comprise a larger fraction of the
generation mix3,4.

region 2007 2008 2009 2010 2011 2012

Electric Reliability Council 109 GWh 1, 417 3, 872 2, 067 2, 622 1, 038
of Texas (ERCOT) (1.2%) (8.4%) (17.1%) (7.7%) (8.5%) (3.7%)
Southwestern Public n/a 0 0 0.9 0.5 n/a
Service Company (SPS) (0.0%) (0.0%) (0.0%) (0.0%)
Public Service Compancy n/a 2.5 19.0 81.5 63.9 n/a
of Colorado (PSCo) (0.1%) (0.6%) (2.2%) (1.4%)
Northern States Power n/a 25.4 42.4 42.6 54.4 120.5
Company (NSP) (0.8%) (1.2%) (1.2%) (1.2%) (3.1%)
Midwest Independent System n/a n/a 250 781 657 726
Operator (MISO), less NSP (2.2%) (4.4%) (3.0%) (2.5%)
Bonneville Power n/a n/a n/a 4.6 128.7 70.8
Administration (BPA) (0.1%) (1.4%) (0.7%)
PJM n/a n/a n/a n/a n/a 111.6

(1.8%)
Total Across These 109 1, 445 4, 183 2, 978 3, 526 2, 067
Seven Areas: (1.2%) (5.6%) (9.6%) (4.8%) (4.8%) (2.7%)

Source: Wiser et al., 2012 Wind Technologies Market Report, table 5

Table 2 A table listing energy curtailed in GWh and in percentage of potential wind generation in various electric power
control regions.

4 Data: EROI and ESOIe

We use net energy ratios to quantitatively compare the ability of energy processes and services to return useful energy
to society. One such ratio EROI (Energy Returned on Invested) is a general net energy ratio that allows comparisons
between different technologies [Hall, Cleveland and Kaufmann, 1986]. Different forms of energy–heat, gravitational
potential, kinetic, chemical, electrical, etc–vary in their efficiency in conversion to mechanical work. In this study we
recast all EROI values in terms of electricity. Electricity is the form most efficiently converted into other forms with
the least amount of 2nd law losses.

4.1 Renewable EROI Data

We acquired energy intensity values and EROI values from several studies in the literature. Discussion of the meta-
analysis method used to collate the data are discussed in5,6. Sources for the estimates are presented in Table 3.
Figure 3 show ESOIe values for storage technologies. Thin film solar technologies have greater EROI values than
wafer technologies (sc-Si and mc-Si). Reported EROI values for wind farms vary from less than 5 to greater than 100.
On average the EROI for on shore wind is 86 for the studies included in our analysis. Reported values for solar EROI
depend on the technology. We have grouped technologies into two categories: wafer and thin film.
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Figure 2 Electrical energy stored on invested (ESOIe) values for storage technologies obtained from peer-reviewed sources are
plotted by circles. Limited storage LCA data leads to box and whisker statistics that cluster near median values as indicated
by text labels.
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4.1 Renewable EROI Data 4 DATA: EROI AND ESOIE

Table 3 Studies found from search and screening process

Reference Year Technology Location Analysis type
7 1995 PV India Process
8 1997 PV Japan Process
9 1997 PV US Process
10 2000 PV Unspecified Process
11 2001 PV Europe Process
12 2001 PV US Process
13 2002 PV India Process
14 2002 PV Europe Process
15 2004 PV Europe Process
16 2004 PV India Process
17 2004 PV Europe Process
18 2005 PV Europe Process
19 2006 PV US Process
20 2006 PV Europe Process
21 2006 PV US Process
22 2006 PV Singapore Process
23 2007 PV Europe Process
24 2007 PV US Process
25 2007 PV Europe Process
26 2008 PV China Process
27 2008 PV Many Process
28 2009 PV Europe Process
29 2009 PV US Process
30 2009 PV Europe Process
31 2010 PV US/Canada Process
32 2010 PV US Hybrid
33 2010 PV China/Japan Process
34 2011 PV Europe Process
35 2011 PV Europe Process
2 2002 Wind Many Meta-analysis
36 2004 Wind Europe Process
37 2005 Wind Canada Process
38 2006 Wind Europe Process
39 2006 Wind Europe Process
40 2008 Wind Taiwan Process
41 2008 Wind Europe Process
42 2009 Wind Europe Process
43 2009 Wind Europe Process
44 2009 Wind Europe Process
45 2009 Wind Australia Hybrid
46 2010 Wind Many Meta-analysis
47 2011 Wind Europe Process
47 2011 Wind Europe Process
48 2011 Wind Europe Process
49 2011 Wind Europe Process
50 2011 Wind China Process
51 2011 Wind China Process
52 2011 Wind Europe Process
53 2012 Wind Europe Process
54 2012 Wind Canada Process
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4.2 ESOIe data

Embodied electrical energy per unit capacity, εe data for ESOIe calculations were obtained from several sources55–57.
As discussed in Sullivan and Gaines, 201057, and taken verbatim from Barnhart and Benson, 201358,

We compare the energy costs of storage technologies by considering their cradle-to-gate embodied energy
requirements. In a cradle-to-gate analysis, a specific Life Cycle Assessment (LCA) valuation, a technology’s
use phase and disposal phase are omitted. We obtained these values for storage technologies from published
LCA studies55–57. A recent review of battery LCA by Argonne National Laboratory recognizes that battery
LCA data often lack detailed energy and material flows in the best of cases57. More commonly data is
non-existent or decades out-of-date. We can, using these data, consider the implications of energy costs,
obtain comparisons between technologies, and identify technology attributes that, if targeted by research,
will lead to reductions in energy use in storage deployment. We converted values from study specific units
to an embodied energy storage ratio, εgate–a dimensionless number that indicates the amount of embodied
energy required for one energy unit of storage capacity.

We obtained LCA data for technologies from three sources55–57. Additional LCA data for materials were
obtained from various reports and software databases59–64. We truncate values to cradle-to-gate from
studies that included cradle-to-grave analyses for consistency e.g. Denholm and Kulcinski, 200455. Values
reported by Rydh and Sanden, 200556 where in units of MJ primary fuel per kg of battery. These were
converted form per kg to per MJ capacity by assuming a practical energy density for electrochemical
storage technologies (see Table 4).

Table 4 Electrochemical storage technology properties

technology reactants mf ρtheoretical
(ρpractical)

Li-Ion LixC6 Li 0.04 448 Wh/kg
(cylindrical Li1−xCoO2 Co 0.35 (200)
spiral-bound)
NaS 2Na+ xS Na 0.42 792
(NGK-Tepco) (x = 5− 3) S 0.58 (170)
PbA Pb+ PbO2 Pb 0.93 252
(prismatic) H2SO4 (35)
VRB V (SO4) V 0.31 167a

V O2(HSO4) (30a)
ZnBr Zn+Br2 Zn 0.29 436

Br 0.71 (70)

Sources: All information from65 unless otherwise noted, [a] 66

As discussed in the main text, we adjusted components of energy ratios cast in terms of primary energy by applying
a reasonable conversion factor. Specifically, embodied energy per unit storage capacity data, ε, from58 were multiplied
by 0.3 to make an energy quality conversion from primary energy to electrical energy. εe values in this study differ from
εgate values used in58, because they are cast in terms of embodied electrical energy, not embodied primary energy. We
justify casting ESOIe in terms of electrical energy because curtailed energy is electrical, not primary energy. Figure 3
is a whisker plot of calculated ESOIe data for technologies considered in this analysis. The lack of storage LCA data
leads to whisker plots that collapse on median values.
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