Electronic Supplementary Information

Facile synthesis of mesoporous Ni_{0.3}Co_{2.7}O₄ hierarchical structures for

high-performance supercapacitors

Hao Bin Wu,^b Huan Pang,^{ab} and Xiong Wen (David) Lou*^b

^{*a*} Key Laboratory for Clearer Energy and Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Henan, 455000, P.R. China Email: huanpangchem@hotmail.com

^b School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore

Email: <u>xwlou@ntu.edu.sg; davidlou88@gmail.com</u> Homepage: http://www.ntu.edu.sg/home/xwlou/

Fig. S1 TGA curve of the nickel cobalt oxalate precursor.

Fig. S2 EDS and elemental mapping of the sample P1.

Fig. S3 EDS and elemental mapping of the sample P2.

Fig. S4 EDS and elemental mapping of the sample P3.

Sample	Co %	Ni %	Co/Ni ratio
P1	66.1	7.3	9.05
P2	66.3	7.5	8.84
P3	66.3	7.4	8.96

 Table S1. Quantitative analysis of Ni and Co contents by ICP-AES.

Fig. S5 HRTEM image of the sample P1.

Fig. S6 HRTEM image of the sample P2.

Fig. S7 HRTEM image of the sample P3.

Materials	Capacitance	Capacitance retention	Reference
Mesoporous Ni _{0.3} Co _{2.7} O ₄ hierarchical structures	960 F g ⁻¹ @ 0.625 A g ⁻¹	98.1% after 3000	This work
	805 F g ⁻¹ @ 6.25 A g ⁻¹	cycles	
Porous Co ₃ O ₄ nanowires	260 F g ⁻¹ @ 2 A g ⁻¹	98% after 2000 cycles	Ref [1]
	171 F g ⁻¹ @ 15 A g ⁻¹		
Ultralayered Co ₃ O ₄	604 F g ⁻¹ @ 4 A g ⁻¹	98.5% after 2000	Ref [2]
	474 F g ⁻¹ @ 16 A g ⁻¹	cycles	
NiCo ₂ O ₄ nanosheets on carbon nanofibers	1002 F g ⁻¹ @ 1 A g ⁻¹	92.75% after 2400	Ref [3]
	675 F g ⁻¹ @ 10 A g ⁻¹	cycles	
Porous NiCo ₂ O ₄ nanowires	743 F g ⁻¹ @ 1 A g ⁻¹	93.8% after 3000	Ref [4]
	584 F g ⁻¹ @ 40 A g ⁻¹	cycles	
NiCo ₂ O ₄ nanowires	760 F g ⁻¹ @ 1 A g ⁻¹	81% offer 2000 evolor	Ref [5]
	532 F g ⁻¹ @ 20 A g ⁻¹		

Table S2. Comparison of electrochemical performance of mesoporous $Ni_{0.3}Co_{2.7}O_4$ hierarchical structures with some Co_3O_4 and $NiCo_2O_4$ materials from literature.

Reference

- [1] B. Wang, T. Zhu, H. B. Wu, R. Xu, J. S. Chen, X. W. Lou, *Nanoscale*, 2012, 4, 2145.
- [2] S. K. Meher, G. R. Rao, J. Phys. Chem. C, 2011, 115, 15646.
- [3] G. Q. Zhang, X. W. Lou, Sci. Rep., 2013, 3, 1470.
- [4] H. Jiang, J. Ma, C. Z. Li, Chem. Commun., 2012, 48, 4465.
- [5] H. L. Wang, Q. M. Gao, L. Jiang, Small, 2011, 7, 2454.