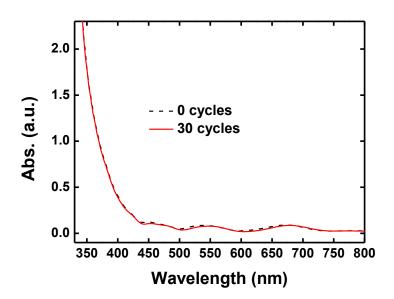
Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2010

Supplementary Material


Promoting water photooxidation on transparent WO₃ thin films by an alumina overlayer

Wooyul Kim,^a Takashi Tachikawa,^b Damián Monllor-Satoca,^a Hyoung-il Kim,^a Tetsuro Majima,^b and Wonyong Choi^a*


^aSchool of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea

^bThe Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

- 1. Fig. S1-S5
- 2. Tables S1-S2

Fig. S1. Absorption spectra of transparent WO_3 and Al_2O_3/WO_3 . The alumina overlayer was deposited by atomic layer deposition (ALD), for 0 cycles (black) or 30 cycles (red). At wavelengths larger than 440 nm, a typical interference pattern stemming from transparent thin film is observed.

Fig. S2. XRD patterns of transparent WO₃ and Al_2O_3/WO_3 . The alumina overlayer was deposited by atomic layer deposition (ALD), for 0 cycles (black) or 30 cycles (red).

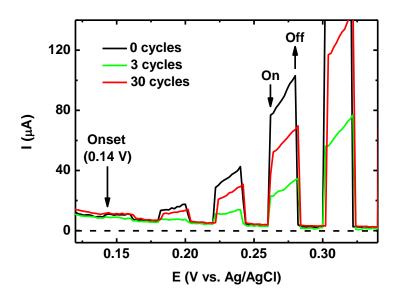
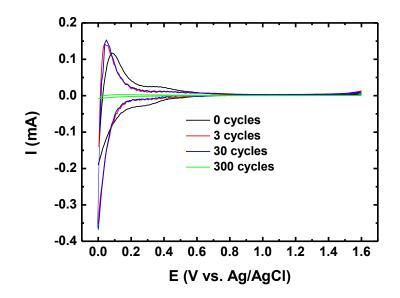
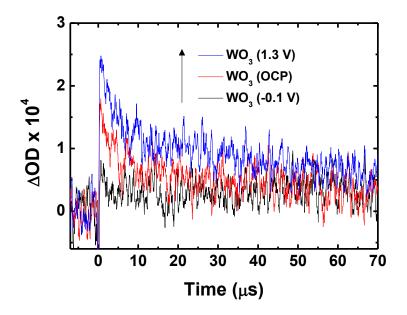




Fig. S3. Linear sweep voltammetry of transparent Al_2O_3/WO_3 electrodes, under chopped simulated AM 1.5G illumination. The alumina overlayer was deposited by atomic layer deposition (ALD), for 0 cycles (black), 3 cycles (green) or 30 cycles (red). Electrolyte: Arpurged 0.1 M HClO₄. Scan rate: 2 mV/s.

Fig. S4. Cyclic voltammetry of transparent Al_2O_3/WO_3 electrodes in the dark. The alumina overlayer was deposited by repeating the cycles of atomic layer deposition (ALD): 0 cycles (black), 3 cycles (red), 30 cycles (blue) or 300 cycles (green). Electrolyte: Ar-purged 0.1 M HClO₄. Scan rate: 20 mV/s.

Fig. S5. Time traces observed at 480 nm during the 355-nm laser photolysis (250 μ J pulse⁻¹) of WO₃ in Ar-purged 0.1 M HClO₄ solution in the absence (open-circuit, OC) and presence of an applied bias (+1.3 V and -0.1 V vs. Ag/AgCl).

Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2010

Table S1. Integrated photogenerated charge (Q_{ph}), evolved oxygen, and calculated faradaic efficiencies (η) obtained with WO₃ and Al₂O₃/WO₃ (30 ALD cycles) thin films.

Electrode	$\mathbf{Q}_{\mathbf{ph}}\left(\mathbf{C}\right)$	O ₂ (µmol)	η(%)
WO ₃	6.245	2.868	17.7
Al ₂ O ₃ /WO ₃	8.507	11.943	54.1

Table S2. Main parameters obtained upon fitting the deconvoluted TAS spectra (Fig. 7) with Gaussian functions. Peak positions (λ) and areas (A) are shown.

Electrode	Trapped holes		Trapped electrons	
	λ (nm)	A (au \times nm)	λ (nm)	A (au \times nm)
WO ₃	455 ± 54	0.038 ± 0.054	611 ± 27	0.0104 ± 0.0183
Al ₂ O ₃ /WO ₃	410 ± 148	0.108 ± 0.150	589 ± 88	0.0024 ± 0.0066