## Supporting information

10

## *In-situ* Doping and Crosslinking of Fullerenes to Form Efficient and Robust Electron-Transporting Layer for Polymer Solar Cells

Namchul Cho,<sup>†</sup> Chang-Zhi Li,<sup>†</sup> Hin-Lap Yip and Alex K.-Y. Jen<sup>\*a,b</sup>

<sup>a</sup> Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195.

<sup>b</sup> Department of Chemistry, University of Washington, Seattle, Washington 98195.

E-mail: ajen@u.washington.edu

General. All reactions dealing with air- or moisture-sensitive compounds were carried out using standard Schlenk technique. All <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra were recorded on a <sup>15</sup> Bruker AV500 spectrometer. Spectra were reported in parts per million from internal tetramethylsilane ( $\delta$  0.00 ppm) or residual protons of the deuterated solvent for <sup>1</sup>H NMR and from solvent carbon (e.g.  $\delta$  77.00 ppm for chloroform) for <sup>13</sup>C NMR. AFM images under tapping mode were taken on a Veeco multimode AFM with a Nanoscope III controller. Cyclic voltammetry (CV) measurements were carried out in a one-compartment cell under N<sub>2</sub>, equipped with a glassy-carbon working electrode, a <sup>20</sup> platinum wire counter electrode, and an Ag/Ag+ reference electrode. Measurements were performed in ODCB/MeCN (5:1 v/v) (0.5 mM) containing Tetrabutylammonium Hexafluorophosphate (0.1 M) as a supporting electrolyte with a scan rate of 100 mV/s. All potentials were corrected against Fc/Fc+. C<sub>60</sub> and PCBMs were purchased from American Dye Source. The Matrix for MALDI-TOF-MS used 2:1 mixture of alpha-cyano-4-hydroxycinnamic acid (CHCA)/2,5-dihydroxybenzoic acid (DHB) in <sup>25</sup> acetonitrile. C<sub>60</sub> was purchased from American Dye Source. 4-vinylbenzyl Chloride was purchased from Sigma-Aldrich. Unless otherwise noted, materials were purchased from Aldrich Inc., and used after appropriate purification.

<sup>30</sup> Synthesis of 1,4-di(vinylbenzyl) fullerene (Full-s): To a freeze-thaw degassed mixture of  $C_{60}$  (2000 mg, 2.78 mmol) and 1-methylnaphthalene (11.8 mL, 83 mmol, 30 equiv.) in 250 mL THF, metal Potassium (271 mg, 6.95 mmol) was added in one portion. A dark red solution was produced after

15

stirring under argon at room temperature for 5 h. 4-Vinylbenzyl chloride (8.5 ml, in 90% purity, ~ 54 mmol) was then added dropwisely. After stirring for another 3.5 h, the reaction mixture was heated at 50 °C overnight then quenched with degassed, saturated aqueous NH<sub>4</sub>Cl (2 mL). The resulting concentrated mixture was precipitated into methanol. The crude product was pre-absorbed in silica gel s then separated with a silica gel column (eluent: first with CS<sub>2</sub>/hexane = 1/5, then CS<sub>2</sub>/hexane = 1/2, then CS<sub>2</sub>) to afford a compound in 45 % yield. **Full-s** <sup>1</sup>H 500 MHz NMR (CDCl<sub>3</sub>):  $\delta$  3.88 (s, 4H, C<u>H</u><sub>2</sub>), 5.27 (dd,  $J_1 = 5.0$  Hz and  $J_2 = 0.9$  Hz, 2H), 5.27 (dd,  $J_1 = 8.25$  Hz and  $J_2 = 0.9$  Hz, 2H), 6.76 (dd,  $J_1 = 3.30$  Hz and  $J_2 = 10.8$  Hz, 2H), 7.56 (m, 8H, Ar-<u>H</u>) <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  48.44, 60.47, 114.01, 128.26, 131.22, 135.76, 138.84, 140.54, 141.98, 142.45, 142.64, 142.97, 143.09, 143.19, 143.71, 143.94, 144.12, 144.25, 144.27, 144.37, 144.67, 144.69, 144.77, 145.01, 145.50, 146.14, 146.92, 146.97, 147.17, 148.63, 148.64, 151.72, 157.71; MALDI-TOF-MS (+): calcd. for [C<sub>76</sub>H<sub>18</sub>O<sub>2</sub>]<sup>+</sup>, 954.98, found. [M-H]<sup>-</sup>, 953.20, [M-vinylbenzyl]<sup>-</sup>, 836.36



**Figure S1**. ORTEP of the structure with thermal ellipsoids at the 50% probability level. Black red plate crystals <sup>20</sup> of **full-s** suitable for single-crystal X-ray diffraction were obtained by slow evaporation of hexane/carbon disulfide solution.



**Figure S2**. Single-crystal analysis of **full-s** showed the closest centre-to-centre distance of 0.99 nm for two fullerenes.

**Table S1**: Crystallographic data for the structures provided.

5

| Empirical formula                               | C78 H18                            |                                |
|-------------------------------------------------|------------------------------------|--------------------------------|
| Formula weight                                  | 954.92                             |                                |
| Temperature                                     | 100(2) K                           |                                |
| 10 Wavelength                                   | 0.71073 Å                          |                                |
| Crystal system                                  | Monoclinic                         |                                |
| Space group                                     | P 1 $2_1/c$ 1                      |                                |
| Unit cell dimensions                            | a = 21.462(11)  Å                  | $\alpha = 90^{\circ}$ .        |
|                                                 | b = 10.226(5)  Å                   | $\beta = 109.458(13)^{\circ}.$ |
| 15                                              | c = 19.538(10)  Å                  | $\gamma = 90^{\circ}$ .        |
| Volume                                          | 4043(4) Å <sup>3</sup>             |                                |
| Z                                               | 4                                  |                                |
| Density (calculated)                            | 1.569 Mg/m <sup>3</sup>            |                                |
| Absorption coefficient                          | 0.090 mm <sup>-1</sup>             |                                |
| <sup>20</sup> F(000)                            | 1944                               |                                |
| Crystal size                                    | 0.30 x 0.17 x 0.05 mm <sup>2</sup> | 3                              |
| Theta range for data collection                 | 1.73 to 25.19°.                    |                                |
| Index ranges                                    | -25<=h<=25, -11<=k<=               | =12, -23<=l<=23                |
| Reflections collected                           | 21316                              |                                |
| 25 Independent reflections                      | 6814 [R(int) = 0.1598]             |                                |
| Completeness to theta = $25.00^{\circ}$         | 93.5 %                             |                                |
| Max. and min. transmission                      | 0.9955 and 0.9735                  |                                |
| Refinement method                               | Full-matrix least-square           | es on F <sup>2</sup>           |
| Data / restraints / parameters                  | 6814 / 60 / 705                    |                                |
| <sup>30</sup> Goodness-of-fit on F <sup>2</sup> | 1.028                              |                                |
| Final R indices [I>2sigma(I)]                   | R1 = 0.1487, wR2 = 0.2             | 3398                           |
|                                                 |                                    |                                |

R indices (all data)R1 = 0.2784, wR2 = 0.4411Extinction coefficient0.010(2)Largest diff. peak and hole0.832 and -0.466 e.Å<sup>-3</sup>

s Fabrication and characterization of OTFT devices: A top contact OTFT devices were fabricated on silicon substrates. Heavily p-doped Si/SiO<sub>2</sub> (300nm) substrates were purchased from Montco Silicon Technologies Inc. The substrates were cleaned by sequential ultra-sonication in acetone, methanol, and isopropyl alcohol. A thermally crosslinked divinyltetramethylsiloxane-bis(benzocyclobutene) (BCB) (Dow Chemicals, Product# XU-13005.02) layer was used to passivate the surface hydroxyl groups on <sup>10</sup> the SiO<sub>2</sub> gate dielectric. The BCB diluted in toluene was spin-coated at 4000 rpm for 60 s. The film was annealed at 250 °C for 4 h under nitrogen for crosslinking. The thickness of the BCB film was 12 nm. The Full-x (bis-FPI) films were prepared from a 2 wt % chlorobenzene solution by spin-coating (5000 rpm for 120s). The gold (50 nm thick) electrodes were deposited on top of the fullerene films by thermal evaporation at 1.0 Å/s through a shadow mask under high vacuum (5.0  $\times$  10<sup>-7</sup> torr). The <sup>15</sup> devices were characterized in a glove box with an Agilent 4155B semiconductor parameter analyzer. Charge carrier mobility was calculated with a linear fit of the saturation region of the square root of Ids versus V<sub>gs</sub> using the standard equation:  $I_{ds} = [(\mu W C_0/2L)/(V_g - V_t)^2]$ , where W, C<sub>0</sub>, and L are channel width (1000 µm), capacitance of gate dielectrics (10.4 nF/cm<sup>2</sup>) and channel length (20 µm), respectively. Figure S4a and S4b showed the linear fit of the saturation region of the square root of I<sub>ds</sub> 20 versus V<sub>gs</sub>.

The conductivity was derived from two-terminal measurements with the equation of  $\sigma = (L/A)(I_d / V_d)$ , where L and A are the channel length and cross-sectional area of the devices, respectively. The conductivities calculated from the slope of  $V_d$ – $I_d$  curves (Figure S4e and S4f) at zero gate voltage are <sup>25</sup> summarized in Table 2 and Table S3. The slope was estimated with a linear fit of  $V_d$ – $I_d$  curves.

*Fabrication of PSCs*: ITO coated glass substrates were cleaned by sequential ultrasonication in acetone, methanol, and isopropyl alcohol, and then treated with oxygen plasma. The ETLs (Full-x and <sup>30</sup> Full-x (bis-FPI)) were prepared from a 2 wt % chlorobenzene solution by spin-coating (2000 rpm and 5000 rpm for 120s). The substrates were submitted to a thermal annealing (210 °C for 30 min) under N<sub>2</sub> atmosphere. The active layers were deposited on ETLs by spin coating the PIDT-PhanQ:PC71BM

10

15

25

(1:3, weight ratio) solution (40 mg/ml in DCB) and then annealed at 110 °C for 10 min in the glove box. A MoO<sub>3</sub> (5 nm) was then deposited via thermal evaporation at a rate of 0.2 Å/s. Afterward, a metal electrode (Ag) (100 nm) was vacuum-deposited at a rate of 2 Å/s.



<sup>20</sup> **Figure S3**. The thickness dependence of device performance for Full-x (25%, bis-FPI) fabricated by two different spin speed (5k rpm for 12 nm and 2k rpm for 24 nm).

| <b>Table 52.</b> Summary of device performance with different thickness of E11 | Table S2. Summary | of device performa | ance with different | thickness of ETLs. |
|--------------------------------------------------------------------------------|-------------------|--------------------|---------------------|--------------------|
|--------------------------------------------------------------------------------|-------------------|--------------------|---------------------|--------------------|

| ETL                          | PCE  | V <sub>oc</sub> | $J_{sc}$              | FF   |
|------------------------------|------|-----------------|-----------------------|------|
| Full-x (25%, bis-FPI), 12 nm | (%)  | (V)<br>0.83     | (mA/cm <sup>2</sup> ) | 0.56 |
| Full-x (25%, bis-FPI), 24 nm | 3.66 | 0.76            | 10.4                  | 0.46 |



**Figure S4**. (a) Transfer characteristics of OTFT devices at varing bis-FPI concentration for Full-s (pre-annealing: before crosslinking) and (b) for Full-x (post-annealing: after crosslinking). (c, d) output characteristics for the <sup>5</sup> same devices before and after crosslinking in semi-log scale of  $I_{ds}$  and (e, f) linear scale of  $I_{ds}$ .

15

20

25

| ETL                   | σ<br>(S/m)           | $\mu$ (cm2/V·s)      | $I_{\rm on}/I_{\rm off}$ | V <sub>t</sub><br>(V) |
|-----------------------|----------------------|----------------------|--------------------------|-----------------------|
| Full-s                | $1.3 \times 10^{-7}$ | $3.4 \times 10^{-4}$ | $5.6 \times 10^4$        | 21                    |
| Full-s (12%, bis-FPI) | $9.1 \times 10^{-3}$ | $1.5 \times 10^{-2}$ | $3.2 \times 10^1$        | 9                     |
| Full-s (25%, bis-FPI) | $2.0 \times 10^{-3}$ | $8.1 \times 10^{-3}$ | $9.3 \times 10^1$        | 13                    |

Table S3. Summary of the performance of pre-annealed OFET devices based on various ETMs.

*Measurements of the capacitance density of gate dielectrics*: The total capacitance densities of the gate dielectric layers were measured from parallel-plate capacitors with p<sup>++</sup>Si/SiO<sub>2</sub>/BCB/Ag and  ${}^{5}$  p<sup>++</sup>Si/SiO<sub>2</sub>/Ag structures using the equation:  $1/C_0 = [(d_{SiO2}/k_{SiO2})+(d_{BCB}/k_{BCB})](1/\varepsilon_0)$ , where  $\varepsilon_0$ : vacuum permittivity, *k*: the dielectric constant of the gate dielectric materials, *d*: thickness). Capacitance-voltage measurements were performed using a HP 4284A LCR meter at room temperature for frequencies from 500 Hz to 300 KHz. The capacitance density vs. frequency for SiO<sub>2</sub> (300 nm)/BCB (12 m) is shown in **Figure S4**. The capacitance densities of SiO<sub>2</sub> and SiO<sub>2</sub>/BCB were ~10.9 and 10.4 nF/cm<sup>2</sup>, respectively. The dielectric constant of the BCB was extracted from the accumulation capacitance of the capacitance-voltage curves by assuming that the total capacitance corresponds to the series combination of BCB and SiO<sub>2</sub> ( $1/C_{total} = 1/C_{SiO2} + 1/C_{BCB}$ ), where  $C = \varepsilon_0 kA/d$ . The active area of device (*A*) is  $3.14 \times 10^{-2}$  cm<sup>2</sup>. The dielectric constant of BCB we calculate is ~2.7.



Figure S5. Capacitance density vs. frequency for SiO<sub>2</sub> and SiO<sub>2</sub>/BCB gate dielectrics.