Accepted 10/17/13

Supplemental Information

The matrix method for calculating the optical properties of an N+2 layer stack

Optical modeling is performed using scattering-matrix formalism to describe transmission and reflection at interfaces as well as propagation through absorbing media (see reference 11). The forward- and reverse-propagating waves on both sides of each interface are related by the continuity equations for the tangential electric and magnetic fields. For *N* layers (of thickness d_1 , d_2 , ... d_N) arranged between a semi-infinite ambient and substrate (designated layers 0 and *N*+1, respectively), the transmission *T* and reflection *R* coefficients at each wavelength λ are related by:

$$\begin{bmatrix} T \\ 0 \end{bmatrix} = \overline{\beta} \cdot \overline{V}_N \overline{V}_{N-1} \cdots \overline{V}_2 \overline{V}_1 \begin{bmatrix} 1 \\ R \end{bmatrix}$$
(SI.1)

We omit the explicit dependence of each term on incident wavelength λ for clarity; this dependence enters through the wavelength-dependent complex index of refraction \tilde{n} (introduced below). The 2x2 matrix $\overline{V_i}$ describes the reflection/transmission at interface *i* (which separates layers *i* and *i*-1) as well as the propagation through layer *i* to interface *i* +1. The matrices $\overline{V_i}$ are given by:

$$\overline{V_i} = \frac{1}{2}(1+p_i) \begin{bmatrix} \exp(-jk_z^i d_i) & 0\\ 0 & \exp(jk_z^i d_i) \end{bmatrix} \cdot \begin{bmatrix} 1 & \Gamma_i \\ \Gamma_i & 1 \end{bmatrix}$$
(SI.2)

where $p_i = Z_i / Z_{i-1}$ is the ratio of the wave impedances Z in layers *i* and *i*-1, and $\Gamma_i = (1 - p_i)/(1 + p_i)$ is the reflection coefficient at the interface between the layers *i* and *i* – 1. In this form, we have explicitly separated the terms describing propagation through the distance d_i of layer *i* (the

first matrix) from reflection and transmission at the interface (the second matrix). For nonmagnetic materials, the wave impedance of a medium differs depending on the polarization of the incident light:

$$Z_i^{TE} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\tilde{n}_i \cos(\theta_i)}$$
SI.3

$$Z_i^{TM} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{\cos(\theta_i)}{\tilde{n}_i}$$
SI.4

Where μ_0 and ε_0 are the permeability and permittivity of vacuum, \tilde{n}_i is the complex index of refraction of layer i — which is generally wavelength dependent — and θ_i is the angle of propagation through layer i, which can be found by iteratively applying Snell's law $(\tilde{n}_i \sin(\theta_i) = \tilde{n}_{i-1} \sin(\theta_{i-1}))$, beginning with the initial angle of incidence θ_0 at the interface between the ambient and layer 1. The final interface between layer N and the substrate is described by the 2x2 matrix $\overline{\beta}$, which is equivalent to $\overline{V_{N+1}}$ under the condition $d_{N+1} = 0$.

The transmittance *t* and reflectance *r* are related to *T* and *R* by:

$$r = |R|^2$$
 SI.5

$$t = |T|^{2} \frac{Z_{0}}{\text{Re}[Z_{N+1}^{*}]}$$
 SI.6

For all modeling performed in the text, the spectrally-dependent complex index of refraction $\tilde{n}(\lambda)$ is used in equations SI.1 – SI.4 (see Figure SI.1). To model a mirror-like back interface underneath the CZTSSe, we used a purely imaginary index ($\tilde{n} = i$) for all wavelengths.

Figure SI.1 – Index of refraction for optical modeling. The n- and k-values used for the analytical optical modeling of CZTS (black), CdS (blue), ZnO (orange), ITO (yellow), and MgF₂ (purple). For ITO and ZnO, these values were measured by spectroscopic ellipsometry of thin films on Si wafers; for MgF₂, fits to broadband reflectivity were used in the same geometry. Surface roughness prevented measurements of CdS and CZTSSe; values from literature were therefore used.

Figure SI.2 – Reflectivity for varying TCO combinations. The total reflected photon current is shown for both analytical modeling (density plot, see text) and experiment (overlaid points); reflected-photon current values are obtained by integrating the spectrally-dependent reflectivity against the AM1.5G spectrum between 300 — 1200 nm. Experiment and modeling confirm that, to a good approximation, reflectivity is a function of the total ITO and ZnO thickness due to their similar indices of refraction. The white line is a line of constant thickness ($d_{TCO} = d_{ITO} + d_{ZnO} = 60$ nm).

Figure SI.3 – Optimal thickness of MgF₂ for the architectures studied in the paper. Figure 2 in the main text showed total reflected (J_R) and transmitted (J_T) currents for a wide range of TCO and CdS-layer thicknesses. At each point in Figure 2, J_R and J_T were chosen for the optimal value of MgF₂ thickness. This figure shows that the optimal MgF₂ thickness ranges from 95 – 125 nm when optimizing (*top*) reflection and (*bottom*) transmission.

501												
	3	Newpor	t Calibration	Calibration Cert. # 2893.01								
NEX ROL	DUT S/N; W Newport Callb Manufacturer Material: CZ Temperature 3 Environmenta The shove DUT Corporation, Q	WS2-D4-4 bration 8: 0810 : IBM IS Stasor: Note I conditions at the ti I has been tested usin 2006d uncertainties a	me of calibration g the following m re expanded using	: Temperati ethods to m a coverage	ure: 3 eet th factor	22 ± 1 °C; c ISO 170 r of $k = 2$;	Humidity: 40- 25 Standard by add expressed w	L 23% the PV Lab : tills nn appro	at Nev ximat	vport ely	No. No. No.	
	95% level of co other measuren The performans performance le Pre-soak:	infidence. Measurent nents and uncertaintic ce parameters reporter vel.	ent of total irradin s are traccable to e d in this certificate	ther NIST apply only	able to or CP at the	s the Worl RC and t time of t	ld Radiometric I he International he test, and imp	Reference (V System of U ly no past or	VRR) Inits (Tutury	and all SI).		
	Efficency [%]	12.04 # 0.25	V_00 [V]	0.4982	±	0.0049	I sc [A]	0.01513	+	0.00028		
201	P_max [mW]	5.23 ± 0.11	V max [V]	0.3886	±	0.0038	1_max [A]	0.01347	4	0.00025	100	
	FF [%]	69.4 ± 1.5	Area [cm^2]	0.4348	4	0.0009	М	1.001	±	0.001		
ACCENTER AND ACCENTER	Standard Rep Spo 100 Secondary Ret Dev Win Cert Cali Sular Simulato Spec Tota Quantant Effic Nea Spec DUT Calibrati Nea Nea	Devices orting Conditions: ctum: AML-5-G (AS 0:0 W/m ⁻² at 25.0°C Receive Cell: ice SiN: PVM 284 ice Material: IBK7 ifferstion: Nation A21.A ISO 1 iffed short circuit can ibration due date: 11- W: ctum: Newport Cen- ort antiannes: 1000 W elency for DUT: sport Cerporation file ctral mismitch correct ion Procedures: sport Cerporation due	TM G173-03/IEC in mal Renewable En accreditation centracting (*) 1709 rent (J.) under stan Jun ² based on J., of name 6819 QE P4 (ion filteror: M = 1 watent QE1021 V watent Acts Mana	60904-3 ed errgy Labore filteate # 22 added report Sol34_Spec the above 1 CERT2dF .001 ± 0.00	1.2) atory 36.01 ting a Secon 01	onditions drameter rdnry Refe	(SRC): 99-5-16s Scan 0117.xts remee Cell	пА			TADA BEADA PADA	
	New	sport Corporation doc	ument Area Meas ument PV948 V1	9	-4						一個的	

Figure SI.4 – **Newport calibration certificate**. Certificate 0810, documenting the efficiency

(12.0%) of the champion CZTS solar cell described in the main text.

Figure SI.5 – Calibrated J-V Certificate 0810, documenting the efficiency (12.0%) of the champion CZTS solar cell described in the main text.