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1. Derivation of Equation 17-19 for uniform velocity motion
For uniform velocity motion, we have:

x(t) = vt (S1)
Substitute Equation S1 into Equation 14, we can obtain:

Q) =

1 1 d 1 1 t 1
oS — oS exp[—Fgo(dot + Evtz)] - Z—gZexp[—Fgo(dot + Evtz)] J, exp [Fgo (doz +

%vzz)] dz (S2)

Equation S2 is very complicated. To simplify it, we can define the following constant:

do
RSSO

A=

(S3.1)

1
2RSeq

B =

v (S3.2)
And Equation S2 can be simplified as:
Q(t) = oS — oSexp(—At — Bt?) — 0SAexp(—At — Bt?) fot exp(Az + Bz?)dz (S4)

Now we are going to prove that:

t 2 -1 2 A _1
J, exp(Az + Bz*) dz = —exp(At + Bt )Dawson( + \/Et) w

NG NG Dawson (i)
(S5)

2VB.

Proof:
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5o (-i5) [ e
! (At + Bt2)D ( 4 +\/§t> ! D ( 4 )
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Therefore,

Q(t) = 0S[1 — exp(—At — Bt?) + \2Fexp(—At — Bt?) x Dawson (%) —2F x
Dawson(% ++/Bt)] (S6)

This is exactly the same equation as Equation 17. Similarly, Equation 18 and 19 can be
obtained.
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2. Basic property of Dawson’s integral
For a Dawson’s integral, it has the following basic property:

Its Maclaurin series can be given by:
Dawson(x) = x — §x3 +0(x%) (S7)

Its asymptotic series can be given by:

Dawson(x) = % +—+ 0(%) (S8)

4x3
Its derivative can be given by:

dDawson(x) _

™ 1 —2xDawson(x) (S9)
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3. Analytical Equation derivation when t exceeds Xmax/V

When ¢ exceeds xmax/v, x equals to xmax. Therefore, Equation 12 can be simplified as

dQ Q max
R E = — E (dO + xmax) + Gxgo (SlO)

From Equation S10, given the boundary condition that Q (= xmax/v ) = Qo , Q IS

calculated as:

stmax ( stmax > [ d() + xmax xmax ]
— — — — t— S11
do + Xmax do + Xmax Qo ) exp RS¢ ( v ) ( )

In Equation S11, Q, can be calculated by assigning ¢ equals to xmax/v into Equation 14.

And when ¢ exceeds xmax/v, the current 7 can be given by:

Gsxmax ) dO + Xmax [ dO + Xmax Xmax ]
I=|——""—— _ - t— S12
(do + Xmax 0 RS¢ exp RS¢, ( % ) (512)

The current decays exponentially with time. The decay time constant z is given by:

RSgg

do+Xmax

(S13)

When R is small, the current decays at a fast speed. While when R is sufficiently large, z

is sufficiently large and the current will decay at a fairly low speed.



Electronic Supplementary Material (ESI) for Energy & Environmental Science
This journal is © The Royal Society of Chemistry 2013

4. Derivation of Equation 23 and Equation 24

When R is small, utilizing the first order of Equation S8, Equation 17 can be simplified as:

) =2 S14
Q) = Rey A + 2Bt (514)
Therefore,
dQ ov A
[=—== (S15)

dt ~ Rey (A + 2Bt)?
When R is large, utilizing the first order of Equation S7, Equation 17 can be simplified as:

ov 1 1 (—At — Bt?) At S16
ReB 2 " 2°%P 71 (10

Q) =

And this time when R is sufficiently large, A and B are close to 0. Therefore,

exp(—At — Bt?) ~ 1 — At — Bt? (S17)

Therefore,
() = vt o1
Q(e) = 2R¢, (518)
I = 4Q = t S19
~dt Re, (519)
Thus,
ovt

V=IR=22 (520)

€o
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5. Derivation of the optimum resistance relationship with TENG parameters

Proof of ¢t, =

e f(F,y)  (S21)

(

From (%)m0 = 0, we can get:

[oe]

n 2
na,v dg
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(522)

xmax

Noting that

n 1d2

= to"
= (n+ 1)x77r11a}cdg

z"“)] dz +

‘)

dg v
RSeqv °d,,
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do ki v z"1 )| dz
RSev\dy = £ (n+ Dl Lld?

'[W d(z) xmax + xrznax i anzn+1 xmax d
= ex
0 PlRSequ\ dy - da Lin+l v
Xmax w i OfnZn+1
= F? + y? Z —||d 523
vaeXp (yzy 1 )92 (523)
n=1
The above equation can be simplified as
1 N n-1 2 2 N n n+1
ﬁz na,w" " exp[—F*(yw +y Z n—+1W )]
n=1 n=1
oo o) 2
a
— exp[—F?*(yw + y? Z n—_:lwn“)] (1 + yz anwn)
n=1 n=1
a
+y Z na,w" texp[—F?(yw + y? Z n—_:lwn“)]
n=1 n=1

w - anZ
X FZ ZZ n
J; exp <y2+y 1
o 2
—Fzy(1+yz anwn) exp[—F?(yw
n=1
(0] [ee] 1
2 An 41 JW 2 zz“nzn+
+y Zn+1w )]0 exp|Felyz+y 1n+1
n= n=

+ yz awh =0 (S24)
n=1

Therefore, we know that w is only a function (f) of Fand y
w=fFy  (525)

Therefore, t, = %w = %f(F, y)  (526)

So the peak value of current will happen at

tmax = min (£o, ) = M9 min(£(F,y),1) = 22 M(F,y) (527)

v

Substitute this back to the general equation for current (Equation 27)

Noting that

dz+1
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1 - a,
14+— Z - t,’}lax 1 +yz a,M™(F,y)  (528.1)

do =1 Xmax

n=1
n+1
RS <d0 max + Z (n + 1)xm71x tmax)
o M"
— —F2yM(F,y)(1 + ZJ) (528.2)

tmax 1 0 anvn
— | dyz + — 1 |[g
fo P Rse, ( T L Dk )] ‘
X M(F.y)
= ﬂf exp |F zZ+y Z dz (528.3)
v Jy
Therefore,
od -
Ipax = _0{_1 + (1 +yz anMn(F;y))

Re, ]

n=

2 anMn(FvY)
FyM(F,y)(1+yZ—n+1 )
n=

+ F2y (1 +y ) @M, y))
n=1
a,M"(F,y)

—F2yM(F,y)(1 + Z”—
yM(F,y)(1+y T )
n:

j«M(F,y) , had @,z
X exp |F°y| z +yz
0 i n +1

Therefore, the peak value of current 7,,,, can be written as

X exp

X exp

dz} (529)

od,
Imasz G(F y) (530)
0

The function G(Fy) is given by:
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G(F,y)=-1+ (1 +yz anM"(F,y)>

n=1

- a,M"(F,y)

—F2yM(F, 1 n- V77
yM(F,y)( +yE1 ——
n=

+ F%y (1 + yZ anM”(F,y)>
n=1

o]

X exp

)

ap,M"™(F,y)
—F2yM(F,y)(1 Z”—
yM(F,y)(1+y 1

n=1
fM(F,y) , had a,z"
X exp|F°y z+yz
0 L n +1

During this time period, maximum transient power output can be calculated as:

X exp

)

dz  (S31)

(6dy)? 1 a2Sv
Prax = IrznaxR = YXEGZ(F,:V) = &

F2G%(F,y)  (S32)

The optimized load resistance satisfied the following equation,

6Pmax
OR

=0 (533)

Considering that only F contains R, Equation S28 can be simplified as

OPpoy OF
o =0 (534)

0G10F

2 —
2FG*(F,y) + 2G(F,y) 3F|3R —

0 (535)
Noting that at Rqp, G is not 0 and

oF _F $36

dR 2R (536)
Equation S35 can be simplified as the following equation

G
G(Foptf y) + Fopt(ﬁ)F=Fom =0 (537)

Equation S37 is exactly the same as Equation 36.
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6. Derivation of Equation 39

At a specific case when the moving mode is in uniform velocity motion, we have the
following equation.

a,=0n=+#1) ;=1 M(F,y)=1 (538)
Put this value back into Equation S31, we can have:

1
G(F,y)=—-1+ {1 +y)exp [—EFzy(Z + y)]

1
+ F?2y(1+y)exp [—ley(2+y)]f exp [Fzy <z+y—zz>l dz (539)
2 . 2

From Equation S5, we can obtain:

1 72
Fyf exp [Fzy <Z + %)l dz
0

= —/2Dawson (%)

1 F
+V2exp [EFzy(Z + y)] Dawson [—

H+ y)] (540)

Therefore,

G(F,y)=—=1+(1+y)exp [—%Fzy(z + y)] [1 —V2FDawson (%)]

+V2F(1 + y)Dawson [%(1 + y)] (541)

Substitute Equation S41 into Equation S37.

Noting that:
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Z—i =—-FyQR+y) A +y)exp [—%Fzy(z + y)] [1 —V2FDawson (%)]
—V2(1 +y)exp [— —F2y(2 + y)] [Dawson (i + Ll

\/7> V2
— F?2Dawson (%)]

+V2(1 +y) {Dawson[ (1+ y)] + —(1 +y)

7
— F?(1+ y)?Dawson [ﬁ(l + y)]} (542)
We can get
1
[F2(1+y)? —1] x {1 —(1+y)exp [——Fzy(Z +y)]} + [F?2(1 +y)? — 2]
{\/_(1 + y)F exp [——FZ 2+ y)] X Dawson (\/2— ) V2F(1 +y)

X Dawson ITF(l + y)l} =0 (543)

It can be simplified as
[F2(1+y)? — 1] x (=6)

=2(1 + y)Fexp [——Fzy(Z + y)] x Dawson (\/2_ ) V2F(1 +y)
X Dawson I?F(l + y)l (544)

When y is larger than 10, which means the gap is sufficiently larger than the thickness of
dielectrics. The right half of Equation S43 is close to 0. Therefore, it can be solved
approximately to the following solution.

1
Fope =H(y) = Tty (545)

The comparison of the exact solution of Equation S44 (numerically calculated by Matlab)
and the approximate solution of Equation S45 is given by the following figure.
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Fig. S1 Comparison of the exact solution from Equation S44 and the approximate
solution from Equation S45.
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7. Optimum resistance relationship with the thickness of the dielectric and the gap
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Fig. S2 Influence of thicknesses of the dielectrics and the gap on the optimum resistance.
(a-b) Relationship of (a) R, (b) Fopr With x,,,c With maintaining the same dielectric
thickness. (c-d) Relationship of (c) R, (d) F,,: With d, with maintaining the same gap
thickness.



