Supporting information

Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen

Satoshi Kato,^a Jieun Jung,^a Tomoyoshi Suenobu^a and Shunichi Fukuzumi*^{a,b}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

^b Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

*To whom correspondence should be addressed. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

Fig. S1 Time courses of ruthenium(III) complex generation under irradiation of a ruthenium(II) complex (20 μ M), i.e., [Ru^{II}(Me₂phen)₃]²⁺ (red circle) or [Ru^{II}(bpy)₃]²⁺ (blue square) with visible light (λ = 450 nm) in an O₂-saturated H₂SO₄ aqueous solution (2.0 M, 3.0 mL, [O₂] = 1.2 mM).

Fig. S2 Time courses of H₂O₂ production at different concentrations of H₂SO₄ [3.0 M (green triangle), 2.0 M (red circle), 1.0 M (blue square) and 0.5 M (black diamond)] under visible light ($\lambda > 420$ nm) irradiation of [Ru^{II}(Me₂phen)₃]²⁺ (20 µM) in the presence of Ir(OH)₃ (3.0 mg) in an O₂-saturated H₂SO₄ aqueous solution (3.0 mL, [O₂] = 1.2 mM).

Fig. S3 Time course of H₂O₂ production under visible light ($\lambda = 450$ nm) irradiation of [Ru^{II}(Me₂phen)₃]²⁺ (20 µM) in the presence of Ir(OH)₃ (3.0 mg) in an O₂-saturated H₂SO₄ aqueous solution (2.0 M, 3.0 mL, [O₂] = 1.2 mM).

Fig. S4 Time course of H₂O₂ production under visible light ($\lambda = 450$ nm) irradiation of [Ru^{II}(Me₂phen)₃]²⁺ (20 µM) in the presence of Ir(OH)₃ (3.0 mg) and Sc(NO₃)₃ (100 mM) in O₂-saturated H₂O (3.0 mL, [O₂] = 1.2 mM).

Fig. S5 Emission spectra of $[Ru^{II}(Me_2phen)_3]^{2+}$ (20 µM) in the absence and presence of O₂ (blue: 0 mM and red: 1.2 mM) taken in H₂O under irradiation of monochromatised light at $\lambda = 450$ nm (a) in the absence of Sc(NO₃)₃ and (b) in the presence of Sc(NO₃)₃ (10 mM). (c) Stern-Volmer plots for the emission quenching of $[Ru^{II}(Me_2phen)_3]^{2+}$ by O₂ in H₂O in the absence of Sc(NO₃)₃ (red circle) and in the presence of Sc(NO₃)₃ (10 mM) (blue square).

Supporting Information Page S6

Fig. S6 ¹H NMR spectra of (a) an aqueous solution containing $[Co^{III}(Cp^*)(bpy)(H_2O)]^{2+}$ (4.0 mM), $[Ru^{II}(Me_2phen)_3]^{2+}$ (20 μ M) and Sc(NO₃)₃ (10 mM) in the dark and (b) after visible light ($\lambda > 420$ nm) irradiation of the solution for 3 h. Black circles indicate bpy signals of $[Co^{III}(Cp^*)(bpy)(H_2O)]^{2+}$ in D₂O.

Fig. S7 Time courses of H_2O_2 production at different concentrations of $[Co^{III}(Cp^*)(bpy)(H_2O)]^{2+}$ [0.1 mM (red line), 0.5 mM (blue line), 1.0 mM (green line), 4.0 mM (orange line) and 10 mM (black line)] under irradiation of $[Ru^{II}(Me_2phen)_3]^{2+}$ (20 µM) with visible light ($\lambda > 420$ nm) in the presence of $[Co^{III}(Cp^*)(bpy)(H_2O)]^{2+}$ and Sc(NO₃)₃ (100 mM) in O₂-saturated H₂O (3.0 mL, [O₂] = 1.2 mM).

Fig. S8 (a) Time course of H₂O₂ production under visible light ($\lambda = 450$ nm) irradiation of [Ru^{II}(Me₂phen)₃]²⁺ (20 µM) in the presence of [Co^{III}(Cp^{*})(bpy)(H₂O)]²⁺ (10 mM) and Sc(NO₃)₃ (100 mM) in O₂-saturated H₂O (3.0 mL, [O₂] = 1.2 mM). (b) Time course of H₂O₂ production under photoirradiation of [Ru^{II}(Me₂phen)₃]²⁺ (100 µM) in the presence of [Co^{III}(Cp^{*})(bpy)(H₂O)]²⁺ (10 mM) and Sc(NO₃)₃ (100 mM) in O₂-saturated H₂O (3.0 mL, [O₂] = 1.2 mM). A solar simulator was used as the light source. The light intensity was adjusted to 10 mJ cm⁻² s⁻¹ (AM1.5) at the sample position for whole irradiation area (1.0 × 3.0 cm²).

Table S1 BET surface area of Ir(OH)3 and commercially available IrO2

	Ir(OH) ₃	IrO ₂
BET, $m^2 g^{-1}$	22.1	0.8

Table S2 Dependence of the quantum yield of the generation of $[Ru^{III}(Me_2phen)_3]^{3+}$ on the concentration of H_2SO_4 under irradiation of $[Ru^{II}(Me_2phen)_3]^{2+}$ (20 µM) with visible light ($\lambda = 450$ nm) in an O₂-saturated H₂SO₄ aqueous solution (3.0 mL, [O₂] = 1.2 mM) for 1 min

[H ₂ SO ₄], M	Quantum yield, %	
4.0	72	
3.0	47	
2.0	21	
1.0	4.9	

Table S3 Rate constants (k_{et}) of photoinduced electron transfer from $[Ru^{II}(Me_2phen)_3]^{2+*}$ to O₂ in H₂O in the absence and presence of Sc(NO₃)₃

[Sc(NO ₃) ₃], mM	$k_{\rm et},{\rm M}^{-1}~{ m s}^{-1}$
0	6.1×10^{9}
10	6.3×10^{9}