Use of Potential Determining Ions to Control Energetics and Photochemical Charge Transfer of a Nanoscale Water Splitting Photocatalyst

Rachel L. Chamousis^[a], Frank E. Osterloh^{*[a]}

Supporting Information (8 pages)

Electron microprobe analyses, charge density calculations, photocurrent scans, and

hydrogen evolution data.

1. Electron microprobe analysis (Table S1, S2) yielded mass percent of 0.73 (Sr^{2+}) and 1.45 (K^+) in the products, which corresponds to 0.11 Sr ions and 0.21 K ions per $[Ca_2Nb_3O_{10}]^-$ formula unit. This confirms partial exchange of H⁺ and TBA+ cations with K⁺ and Sr²⁺ respectively.

Data Set	Weight Percent				Adjusted Atomic Percent*					
	Ca	Sr	Nb	0	Total	Ca	Sr	Nb	0	Total
1	13.86	1.21	46.30	25.47	86.84	14.11	0.56	20.35	64.98	100
2	13.14	2.06	43.73	24.07	83.00	14.09	1.01	20.23	64.67	100
3	13.42	1.51	45.82	25.09	85.83	13.88	0.71	20.44	64.97	100
4	13.18	1.61	43.07	23.80	81.66	14.31	0.80	20.17	64.73	100
5	13.85	1.27	46.77	25.67	87.56	14.01	0.59	20.40	65.01	100
Average						14.08	0.73	20.32	64.87	
Atomic Composition						2.01	0.11	2.90	9.27	

Table S1Electron microprobe data for $Sr_{1/2}[Ca_2Nb_3O_{10}] \times Sr(NO_3)_2$

*Carbon and hydrogen cannot be accurately quantified due to analytical limitations

Data Set	Weight Percent				Adjusted Atomic Percent*					
	Ca	K	Nb	0	Total	Ca	K	Nb	0	Total
1	14.07	1.57	46.93	25.82	88.39	13.99	1.60	20.12	64.29	100
2	13.94	1.14	47.04	25.82	87.93	13.93	1.17	20.28	64.63	100
3	13.37	1.58	47.15	25.64	87.74	13.43	1.63	20.43	64.51	100
4	13.38	1.28	45.56	24.96	85.17	13.81	1.35	20.29	64.54	100
5	12.98	1.40	44.94	24.53	83.85	13.62	1.51	20.36	64.51	100
Average						13.75	1.45	20.30	64.50	
Atomic Composition						1.97	0.21	2.90	9.21	

Table S2Electron microprobe data for K[Ca2Nb3O10] x KNO3

*Carbon and hydrogen cannot be accurately quantified due to analytical limitations

2. Calculation of surface charge density from estimated surface potential

Physical Constants

N _A (Avogadro number)	6.02E+23	mol⁻¹
R (Ideal Gas constant)	8.314	J K ⁻¹ mol ⁻¹
F (Faraday constant)	96485	sA mol⁻¹
T (absolute Temperature)	298	К
z (Charge)	1	
ε_0 (Permittivity)	8.85E-12	F m ^{−1}
ϵ (relative Permittivity)	30	
Geometrical footprint of		
LiCa ₂ Nb ₃ O ₁₀ formula unit		
on nanosheet (one side,		
see figure below)	0.149	nm²
(both sides)	0.298	nm²

 $LiCa_2Nb_3O_{10}$ footprint calculated from structural data from Dion et al.¹

Grahame Equation from reference²

$$\sigma = \sqrt{8RT\varepsilon\varepsilon_0 c^0} \sinh\left(\frac{zF\phi_0}{2RT}\right)$$

 σ : surface charge density (C m⁻²), ϕ_0 : surface potential (V), c_0 : counterion concentration

(mol L^{-1}); for other constants see table above

Importantly, the unknown Cl⁻ counterion concentration c^0 in the nanosheet films is estimated as only 10% of the solution value (0.1 M) because the large $(C_2H_5)_4N^+$ ion has limited ability to penetrate the film. Using the solution concentration value of 0.1 M produces surface potentials of ~ 10 mV, a factor of 10 below the experimental values.

PDI	Nanosheet	Nanosheet		Elemental	
induced	film	film Elemental		charge per	
surface	electrolyte	charge	charge per	nanosheet	PDIs per formula
potential	conc	density	nm ² of	formula	unit from
/ V	/ mol m ⁻³	/ C m ⁻²	nanosheet	unit	microprobe analysis
0.04	1.00E+01	6.24E-03	3.89E-02	1.31E-01	K+: 0.21 (=0.21 +)
0.12	1.00E+01	3.72E-02	2.32E-01	7.79E-01	Sr ²⁺ : 0.11 (=0.22 +)

Figure S1. A) Photocurrent scan for pH 3-modified nanosheet film on FTO. Irradiated using chopped light from 300 W Xe arc lamp in 0.1 M TEACl in methanol. B) Absolute photocurrent density versus voltage curve for same photocurrent scan.

Figure S2. A) Photocurrent scan for pH 1-modified nanosheet film on FTO. Irradiated using chopped light from 300 W Xe arc lamp in 0.1 M TEACl in methanol. B) Absolute photocurrent density versus voltage curve for same photocurrent scan

Figure S3. A) Photocurrent scan for Sr^{2+} -modified nanosheet film on FTO. Irradiated using chopped light from 300 W Xe arc lamp in 0.1 M TEACl in methanol. B) Absolute photocurrent density versus voltage curve for same photocurrent scan

Figure S4. A) Photocurrent scan for K^+ -modified nanosheet film on FTO. Irradiated using chopped light from 300 W Xe arc lamp in 0.1 M TEACl in methanol. B) Absolute photocurrent density versus voltage curve for same photocurrent scan

Figure S5. Time-dependent hydrogen evolution of cation-modified $M_xH_{1-x}[Ca_2Nb_3O_{10}]$. Results are for 25 mg of catalyst dispersed in 50 mL 20% aqueous methanol at pH 1 in a 100 mL quartz flask under irradiation with a 300 W Xe arc lamp. Age of stock $TBA_xH_{1-x}[Ca_2Nb_3O_{10}]$ increases from A) to C). D) Dependence of rate of H_2 evolution on aging time of stock $TBA_xH_{1-x}[Ca_2Nb_3O_{10}]$

References

- 1. M. Dion, M. Ganne and M. Tournoux, *Materials Research Bulletin*, 1981, **16**, 1429-1435.
- 2. A. J. Bard and L. R. Faulkner, *Electrochemical methods : fundamentals and applications*, John Wiley, New York, 2001.