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I. First-principles and Monte Carlo calculations

I.A. First-principles calculation of thermodynamic properties

The thermodynamic properties for the Li-Cu-TiS2 ternary system within the spinel crystal 

structure of TiS2 were calculated with well-established statistical mechanical techniques 

based on the cluster expansion formalism [1,2] as implemented in our CASM (A clusters 

approach to statistical mechanics) code [3,4]. The approach relies on the construction of an 

effective Hamiltonian (a cluster expansion) that describes the energy of the crystal as a 

function of configurational degrees of freedom. The coefficients of the effective Hamiltonian 

are fit to first-principles total energy calculations obtained within the generalized gradient 

approximation (GGA) to density functional theory (DFT). Monte Carlo simulations are then 

applied to calculate finite temperature thermodynamic properties, including relationships 

between free energies, chemical potentials and concentrations. 

To mathematically represent the ternary configurational degrees of freedom 

associated with all the possible ways of distributing Li, Cu and vacancies over the interstitial 

sites of spinel TiS2 (i.e. the 8a and 16c sites within the Fd3m  space group, with Ti and S 

occupying the 16d and 32e sites respectively), we assign occupation variables to each 

interstitial site. First-principles total energy calculations show that Li is stable in both the 

octahedral and tetrahedral sites of spinel TiS2, energetically preferring the octahedral sites [5]

, while Cu only occupies the tetrahedral sites. Hence, the octahedral sites will only have 
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binary disorder (Li-vacancy) while the tetrahedral sites will have ternary disorder (Cu, Li and 

vacancies). For each octahedral site, we assign an occupation variable

 

pi
Li that is equal to 1 if 

site i is occupied by Li and 0 if it is vacant. For each tetrahedral site, we assign two 

occupation variables, p j
Li  and p j

Cu . Just as with the octahedral site, p j
Li  for the tetrahedral 

site is equal to 1 if site j is occupied by Li and 0 otherwise, and p j
Cu  is equal to 1 if site j is 

occupied by Cu and 0 otherwise. Within the cluster expansion formalism, the total energy 

can then be written as an expansion in terms of products of occupation variables belonging to 

clusters of sites according to

  

 

E   p  Vo  V  
  p  


 (S1)

where   

 

  p  p1
Li,..., pi

Li,..., p2N
Li , p1

Cu,..., p j
Cu,..., pN

Cu  is the collection of occupation variables for a 

spinel crystal structure of TiS2 having 2N octahedral sites and N tetrahedral sites. The 

polynomial basis functions   are defined as products of occupation variables belonging to a 

cluster of sites within the crystal according to

 

  pi
A

i

 (S2)

where i are tetrahedral or octahedral sites belonging to a cluster  (e.g. a pair cluster, a 

triplet, a quadruplet etc.), and A refers to either Li or Cu. The coefficients in the above cluster 

expansion, Vo and V, are called effective cluster interactions and are to be determined from 

first principles. While the cluster expansion extends over all clusters of sites and 

permutations of Li and Cu occupation variables over those sites, in practice, it must be 

truncated above some maximally sized cluster. 

The effective cluster interactions (ECI) are usually fit to reproduce the total energies, 

calculated from first principles, for a number of different configurations. In this work, DFT 

calculations were performed with the Vienna ab initio simulation package (VASP) [6,7] 

using the generalized gradient approximation with the projector augmented-wave (PAW) 

functional [8,9] and a cutoff energy of 400.0 eV for the electron plane wave expansion. All 

ions and the shape and size of the supercells of different Li-Cu-vacancy configurations 

within spinel TiS2 were allowed to relax until the forces on all atoms were less than 0.03 
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eV/Å. We used the TiS2, Cu0.5TiS2 and LiTiS2 as the reference state. The cluster expansion 

was fit to the formation energies of LixCuyTiS2 defined as:

E f  Et,LixCuyTiS2
 xEt,LiTiS2

 yEt,Cu0.5TiS2
 (1 x  y)Et,TiS2

(S3)

where 

 

E t,LixCuyTiS2
, 

 

E t,LiTiS2
, 

 

E t,Cu0.5TiS2
 and 

 

E t,TiS2
 are the total energies of LixCuyTiS2,  LiTiS2, 

Cu0.5TiS2 and spinel TiS2, respectively. A total of 256 Li-Cu-vacancy configurations over 

spinel TiS2 were calculated and used in the fit of the ECI of a truncated cluster expansion. 

The cluster expansion contains 8 Li-Li pairs, 18 Li-Li-Li triplets, and 15 Li-Li-Li-Li 

quadruplets, 6 Cu-Cu pairs, 3 Cu-Cu-Cu triplets and 1 Cu-Cu-Cu-Cu quadruplet along with 7 

Li-Cu pairs and 1 Li-Cu triplet interaction. The ability of the cluster expansion fit to 

reproduce the original energies is illustrated in Fig. S1. The root mean square error is 3.2 

meV per LixCuyTiS2 formula unit.  

Figure S 1 The cluster expansion fitted formation energies (Ef) versus the formation 
energies calculated by DFT for the same configuration.

Grand Canonical Monte Carlo simulations were performed in a spinel crystal with 

periodic boundary conditions containing 121212 spinel primitive cells. The average 

composition of Li and Cu was calculated as a function of chemical potential. The grand 
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canonical and Gibbs free energies were subsequently obtained through free energy 

integration in ternary chemical potential space [10] using the energies of TiS2, Cu0.5TiS2 and 

LiTiS2 as the reference states. The ternary phase diagram was then calculated by determining 

the crossing points of the grand canonical free energies determined from Monte Carlo 

simulations that traversed from low to high chemical potential and from high to low chemical 

potential. Hysteresis in Monte Carlo simulations around first-order phase transitions (two-

phase regions in the present context) allows us to calculate meta-stable free energies that 

extend into the two-phase regions to some degree. Crossing points of grand canonical free 

energies as a function of chemical potentials are equivalent to the common tangent 

construction applied to the Gibbs free energy. While LixCuyTiS2 exhibits a variety of stable 

ordered phases at zero Kelvin, our Monte Carlo simulations indicated that Li and Cu form a 

disordered solid solution over the interstitial sites of spinel TiS2 at 300 K. We found no 

evidence of Li-Cu-vacancy ordering at room temperature as manifested by steps in the 

chemical potential curves as a function of concentration. We did not explore order-disorder 

reactions below 300 K.

The free energy obtained from first principles and Monte Carlo simulations is only 

defined for regions in the TiS2-Cu0.5TiS2-LiTiS2 ternary composition space where the solid 

solution is stable or metastable. Regions where the curvature of the free energy surface is 

negative (i.e. the solid solution is unstable) are inaccessible with Monte Carlos simulations. 

The free energy inside the spinodal was therefore described with a downward parabolic 

surface for the two-phase region. The free energy within the spinodal was parameterized such 

that appropriate interfacial energy and interfacial thickness of the phase boundary are 

determined along with the gradient energy coefficient as 

 

 ~ (2 2h ) /3 and l ~ / 2h  

respectively, where  is the gradient energy coefficient and h is the barrier height of the free 

energy function. Here, we set the height of the downward parabolic surface to be 0.09 eV. 

The selection of this value was motivated by first-principles calculated mixing energies. The 

Li-octahedra share faces with the Cu-tetrahedra in the spinel host of TiS2. Along the 

Cu0.5TiS2-LiTiS2 composition line, Li and Cu will by necessity occupy octahedral and 

tetrahedral sites that share faces, which has a large energy penalty associated with it. For 

example, the mixing energy for Li2Cu(TiS2)4 relative to Cu0.5TiS2 and LiTiS2 whereby Li and 

Cu are arranged to minimize the number of filled face-sharing Cu tetrahedra and Li octahedra 
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was calculated to be 0.09 eV per formula unit. Other configurations that increase the number 

of shared tetrahedron/octahedron faces have higher mixing energies. 

 Diffusion smoothing of the constructed free energy surface was performed such that 

its derivatives with respect to concentrations are smooth. Note smoothing was only 

conducted in the two-phase region while the values of the free energy for compositions 

where the solid solution is stable remain unaltered from that determined by Monte Carlo. 

Figure S2 shows the contour plot of the free energy surface obtained by the method 

mentioned above. Since it is very difficult to interpolate the overall free energy surface in 

polynomial functions, we instead calculated the chemical potentials using a finite difference 

scheme from the discrete data points and tabulated the values of individual data points. In the 

continuum-level simulations, the chemical potentials were linearly interpolated for the 

compositions between the tabulated data points.

Figure S 2 Color contour of the free energy per interstitial site in spinel LixCuyTiS2. The 
area on the left side of the gray line is the solid-solution region calculated from first 
principles.
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I.B. Calculation of diffusion coefficients

Diffusion in electrode particles undergoing displacement reactions is more complex than 

simple intercalation as two components must diffuse over the interstitial sites of the host. For 

example Li and Cu diffusion can occur simultaneously in solid solutions of LixCuyTiS2, 

sharing interstitial sites of the spinel TiS2 network. From irreversible thermodynamics, the 

relevant flux equations take the form

JLi  LLiLiLi  LLiCuCu (S4a)

 

JCu  LCuLiLi  LCuCuCu (S4b)

where Lij are the kinetic transport coefficients and i are chemical potentials. The coefficients 

Lij can be calculated using Kubo-Green expressions according to [11,12,13]

Lij 



R

i t 








 


R

j t 









2d tVkBT (S5)

where   

 


  
R 

i t  connects the endpoints of trajectories of atom  of type i = Li or Cu after time t 

in a crystal of volume V, kB is Boltzmann’s constant, T is the absolute temperature and d is 

the dimension of the network of interstitial sites. The triangular brackets denote averages in 

the usual statistical mechanical sense. It is more practical to express the fluxes in terms of 

gradients of concentration 

JLi  DLiLiCLi DLiCuCCu (S6a)

JCu  DCuLiCLi DCuCuCCu (S6b)

where the matrix of diffusion coefficients Dij is a matrix product of Lij with a matrix of partial 

derivatives of chemical potentials. As with simple intercalation, all quantities needed to 

determine the matrix of diffusion coefficients can be calculated by applying grand canonical 

Monte Carlo simulations (to obtain chemical potentials versus composition) and kinetic 

Monte Carlo simulations (to evaluate kinetic transport coefficients) to cluster expansions for 

the configurational energy and migration barriers.

The Kubo-Green expressions can be evaluated explicitly by sampling a large number 

of representative trajectories within kinetic Monte Carlo simulations. These can be sampled 

with transition state theory providing stochastic estimates of hop frequencies of atoms to 

adjacent vacant sites. According to Vineyard [14], these hop frequencies can be estimated as 
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  *exp 
E
kBT







 (S7)

where E is the migration barrier for a hop and * is a vibrational prefactor, which in the 

Harmonic approximation, is equal to the ratio of the product of vibrational frequencies of the 

solid in the initial state to the product of non-imaginary vibrational frequencies of the solid 

when the atom is in the activated state. 

Due to the large difference between the calculated Li and Cu mobilities in spinel TiS2 

(with typical hop frequencies differing by several orders of magnitude at room temperature) 

it is not feasible with standard kinetic Monte Carlo simulations to evaluate the full 22 

matrix of kinetic transport coefficients Lij. Hence in this study we restricted ourselves to 

predicting diffusion coefficients along the binary TiS2-Cu0.5TiS2 and TiS2-LiTiS2 axes and 

then extrapolating these values to the ternary space as described below. For single component 

interstitial diffusion, the diffusion coefficients appearing in Fick’s law can be factored into a 

product of a thermodynamic factor, , and a kinetic factor, DJ, according to D  DJ  [15] 

with 

DJ 
kBT

X
L      and       

  / kBT 
 ln X

(S8)

where L is a kinetic transport coefficient obtained using the method as in Eq. (S5),  is the 

volume of the host per interstitial site available, and X is the occupied site fraction of the 

diffusion species.  

The calculation of the Li diffusion coefficient is described in more detail elsewhere [16,

17,18]. All migration barriers were calculated in the cubic unit cell of spinel TiS2 consisting 

of 32 sulfur atoms, 16 titanium atoms and variable number of Li or Cu atoms. The nudged 

elastic band method was used to calculate the migration barrier for Li and Cu hops. A 

calculation of 30 migration barriers in different Li-vacancy configurations revealed a strong 

dependence of the barrier on local environment. However, this dependence was only on the 

immediate local environment, with migration barriers for leaving tetrahedral sites lying in 

three distinct bands depending on whether the Li atom was hopping into a single vacancy, a 

divacancy or a triple vacancy [5]. The migration barriers for 8 different Cu-vacancy 

configurations were also calculated in TiS2. The Cu migration barriers were found to be 
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insensitive (within the numerical error of these calculations, ~25-50 meV) to Cu composition 

and Cu-vacancy arrangement, having a value around 0.9 eV. Within the kinetic Monte Carlo 

simulations, the cluster expansion for Li-Cu-vacancy disorder over the interstitial sites of 

spinel TiS2 was used to calculate the energies of the end states of the hop. For Li hops, 

migration barriers were calculated by adding environment dependent barriers to the energy of 

tetrahedral occupancy [5]. For Cu hops, a constant kinetically resolved migration barrier was 

added to the average energy of the intial and final states of the hop minus the energy of the 

initial state of the hop [16]. The vibrational prefactors appearing in Vineyard’s expression for 

atomic hop frequencies were calculated within the local harmonic approximation. Predicted 

Li and Cu diffusion coefficients along the TiS2-Cu0.5TiS2 and TiS2-LiTiS2 binary axes are 

shown in Fig. 2c in the main text.

Calculations of the migration barriers for Li and Cu as a function of the spinel TiS2 

host volume showed that the Li migration barrier increased with decreasing volume while 

that of Cu decreased with decreasing volume. Since all calculations were performed within 

the GGA approximation to DFT, which over predicts lattice parameters, we expect that the 

predicted mobility of Cu is likely underestimated while that of Li is overestimated. For 

example, we found that the migration barrier of Cu at the equilibrium GGA lattice parameter 

of TiS2 (9.83 Å) is almost 100 meV higher than that calculated at the experimental lattice 

parameter of TiS2 (9.75 Å). At room temperature, the difference in migration barriers 

translates into an underprediction of the Cu diffusion coefficient by a factor of 50 (almost 2 

orders of magnitude).

We used the calculated diffusion coefficients of the TiS2-Cu0.5TiS2 and TiS2-LiTiS2 

binaries to estimate the diagonal L coefficients for the ternary system. The diagonal Lii 

coefficients scale directly with the concentration of the diffusing specie i. Furthermore, if the 

interstitial sites form a lattice and the interstitial atoms behave as an ideal solution, the kinetic 

transport coefficients will also scale with the concentration of vacancies [19]. For Li and Cu 

diffusion in spinel TiS2, we can therefore to first order write the diagonal transport 

coefficients for ternary compositions as

LLiLi  XLi  1 XLi  1 2XCu Li (S9a)

LCuCu  XCu  1 XLi  1 2XCu Cu . (S9b)
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Since the Li and Cu atoms do not occupy the same sublattice, the kinetic coefficients scale 

with the vacancy concentration on each sublattice. For example, Li hops require the end state 

of the hop on the octahedral site to be vacant. However, since Li must hop through a 

tetrahedral site, the intermediate tetrahedral site must also be vacant. Hence, 

 

LLiLi should 

scale with the product of the vacancy concentration on the tetrahedral sublattice, 1 2XCu , 

and the vacancy concentration on the octahedral sublattice, 1 XLi . In the above expressions, 

Li and Cu will also depend on the overall concentration, XLi and XCu, if the migration 

barriers for the hops depend on concentration and if hop frequencies depend on long and 

short-range order among the interstitial diffusers (e.g. the divacancy and triple-vacancy hop 

mechanisms for Li in spinel LixTiS2). In extrapolating our binary diffusion coefficients to the 

ternary system, we fit Li and Cu such that the diagonal kinetic transport coefficients 

reproduce the binary kinetic transport coefficients. The mobilities, i, are related to the self-

diffusion coefficients calculated from first principles and kinetic Monte Carlo simulations 

according to 

 

Li 
DJ

Li

1 XLi kBT
    and     Cu 

DJ
Cu

1 2XCu kBT
(S10)

where 



DJ
Li  and 



DJ
Cu are the binary self-diffusion coefficients of Li and Cu in TiS2 crystal, 

respectively. Note that we have neglected the off-diagonal terms in the Onsager transport 

coefficients in Eq. (S4), and similarly those in the boundary conditions (insertion/extraction 

fluxes). While it is a reasonable approximation for most materials, there could be examples, 

where such approximations are not valid and our general conclusion may not hold.

Substituting Eq. (S10) into Eq. (S9), we obtain

LLiLi  XLi  1 2XCu  a  
DJ

Li

kBT (S11a)

LCuCu  XCu  1 XLi  b  
DJ

Cu

kBT (S11b)

where a  and b  are small values taken to avoid a complete stall in diffusion in the 

simulations. Here, we choose 0.00025 and 0.000125 for a  and b , respectively. They are 

0.1% of the maximum values of XLi  1 2XCu  and XCu  1 XLi . 
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As a measure of the asymmetry in Li and Cu mobilities, we defined a parameter, , to 

be   DLi / DCu , where DLi  and DCu  are the average value of the diffusion coefficients, 

respectively, over the single-component axes in the composition space; i.e., 

DLi  DLi XLi 
0

1

 dXLi / dXLi0

1

  and DJ
Cu  DCu XCu 

0

0.5

 dXCu / dXCu0

0.5

 . When the value of  is 

unity, the mobilities are equal on average, while  greater than one indicates Li is more 

mobile than Cu on average. A similar parameter averaging the transport coefficient can be 

obtained by L  LLiLi / LCuCu , where the average values of transport coefficients are taken 

over the ternary composition space as

LLiLi  LLiLi XLi, XCu 
0

1XLi /2
 dXCu0

1

 dXLi / dXCu0

1XLi /2
0

1

 dXLi  and 

LCuCu  LCuCu XLi, XCu 
0

1XLi /2
 dXCu0

1

 dXLi / dXCu0

1XLi /2
0

1

 dXLi .  In this presented work, the 

values of L  scales with   by L  0.8749 .

II. Phase field approach

II.A. Cahn-Hilliard equation

In a phase field model, the chemical potential for transport is given by

  f
C
2C (S12)

where f is the bulk free energy (described below), C is the order parameter, and  is the 

gradient energy coefficient. For a conserved order parameter (e.g., concentration), the flux is 

given by J  L , where L is the transport mobility, and the gradient of the chemical 

potential provides the driving force. The concentration evolution is governed by mass 

conservation:

C
t
 L f

C
2C





. (S13)

This equation is known as the Cahn-Hilliard equation. When f has two minima, as in a 

double-well function, the system tends to separate into two phases (or stay in a two-phase 

coexistence mixture). This is the case when the composition resides in the two-phase region 

in the ternary phase diagram shown in the main text. The second term in the chemical 
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potential panelizes a steep variation of the composition in the interfacial region, and, along 

with the excess bulk free energy, contributes to the interfacial energy. On the other hand, 

when f has a single minimum, the system tends to form a single-phase solid solution. This is 

the case when the composition is in the solid solution region in the ternary phase diagram.

II.B. Smoothed boundary method

To account for the particle geometry in the simulations, we employed the smoothed boundary 

method [20,21] with a continuous domain parameter, .  The region within the particle where 

Li and Cu transport occurs is defined by volume where 



 1, while the outside of the 

particle is defined by 



  0. Therefore, the particle surface where Li and Cu are 

inserted/extracted is automatically defined by the narrow transitioning region where 



0  1. The Cahn-Hilliard equations for Li and Cu are then reformulated [21] into 

CLi

t


1

  LLiLiLi  


JLi s (S14a)

CCu

t


1

  LCuCuCu  


JCu s (S14b)

where JLi s  and JCu s  are the insertion/extraction fluxes at the particle surface for Li and Cu, 

respectively, and their expressions are given in the main text.

II.C. Simulation setup

The concentration evolution equations were nondimensionalized by using the length scale l, 

the reference mobility L0, and time scale 



  l2 /L0. A standard second-order central 

difference scheme in space and Euler explicit scheme in time were employed to implement 

the 2D continuum-level simulations. The 2D computational domain contains 176128 

Cartesian grid points, which corresponds to an area of 1.761.28 m2. Particle geometry was 

defined by a continuous domain parameter, , where 



 1 for the interior of the particle and 



  0 for the exterior. The long and short axes of the particle are roughly 150 and 105 grid 

spacings, respectively. The domain parameter takes the form of 
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  1
2

tanh 





1









 (S15)

where  is the dimensionless distance to the particle surface and  is used to control the 

interfacial thickness. By setting   0.5 , the interfacial thickness is roughly 2.2 grid 

spacings [21], when it is defined by 0.015   0.985  (approximately 1 grid point when 

defined by 0.1  0.9 ).  See Fig. S3 for the particle geometry. The parameters used in 

the simulations are provided in Table S1. 

Figure S 3 Continuous domain parameter profile that defines the particle geometry, 
where the domain parameter value equal to 1 indicates the interior of the particle, the 
value equal to 0 for the exterior, and the values between 0 and 1 for the particle surface.

III. Additional figures of morphological evolution during discharging

In Fig. S4, we present the snapshots of the morphological evolutions during discharging with 

 = 100 and 10000 in addition to that shown in the main text for discharging with  = 1. The 

evolutions proceed in a two-phase reaction dynamics where Li-rich regions grow at the 

expense of Cu-rich regions. A distinguishable difference between the two sets of results can 

be noted such that the Li-rich regions nucleate in many small particles in the area near the 

particle surface in the case with  = 100, whereas the Li-rich regions nucleate in segments of 

a thin shell in the case with  = 10000. This morphological difference in the early stage can 

be attributed to the effect of Cu mobility. When Cu mobility is larger, a deeper penetration 
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length for Cu is reached, resulting in spherical initial Li-rich phases. In contrast, plate-like 

initial Li-rich phases form when Cu mobility is small. The Li-rich regions continuously grow 

and eventually form a complete shell of the particle. Once the shells are completed. The 

following morphological evolutions for both the two cases are very similar; i.e., a shrinking-

core phase boundary motion until the entire particles are lithiated. Although with a 

discernible difference in the nucleation and early stages of the morphological evolutions, the 

kinetic reaction paths of discharge for both the two cases, as well as the case with  = 1, all 

follow the same edge (Cu0.5TiS2-LiTiS2) in Fig. 6A in the main text, showing the same two-

phase transition from Cu-rich Cu0.5TiS2 to Li-rich LiTiS2. This is because Li can only enter 

the crystal when Cu is extruded despite Cu mobility and the corresponding morphology. The 

simulations clearly demonstrate that the reaction path of discharge is independent of mobility 

asymmetry between Li and Cu in this displacement reaction.

Figure S 4 Snapshots of evolution of Li and Cu in the LixCuyTiS2 particle during 
discharge process for (a)-(d)  = 100 and (e)-(h)  = 10000. The left and right images in 
each subfigure are Li and Cu mole fraction profiles, respectively, in the same particle at 
the same time. The average compositions of the entire particle in (a)-(d) and (e)-(h) are 

 = (0.0625, 0.469), (0.125, 0.438), (0.25, 0.375), and (0.375, 0.3125), (X̅Li, X̅Cu)
respectively.
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Table S 1 The physical parameters used in the continuous simulations.

Grid spacing (l) 10-6 cm
Reference mobility (L0) 110-9 s-1cm-1eV-1

Reaction constant for Li (KLi) 210-3 s-1cm-2eV-1

Reaction constant for Cu (KCu) 210-3 s-1cm-2eV-1

Gradient coefficient for Li (Li)  (eV)1/2l
Gradient coefficient for Cu (Cu)  (eV)1/22l
Applied voltage for discharge () 1.0 V
Applied voltage for charge () 2.4 V

1 J. M. Sanchez, F. Ducastelle, D. Gratias, Physica A, 128, 334-350 (1984).

2 D. de Fontaine, Solid State Physics, 47, 33-176 (1994).
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