#### **Supporting Information**

for

#### An Inversion Layer at the Surface of *n*-type Iron Pyrite

Moritz Limpinsel,<sup>1</sup> Nima Farhi,<sup>2</sup> Nicholas Berry,<sup>3</sup> Jeffrey Lindemuth,<sup>4</sup> Craig L. Perkins,<sup>5</sup> Qiyin Lin,<sup>6</sup> Matt Law<sup>1,2,6</sup>

<sup>1</sup>Department of Chemistry, University of California, Irvine, Irvine, CA 92697 <sup>2</sup>Dept. of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA 92697 <sup>3</sup>Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 <sup>4</sup>Lake Shore Cyrotronics, Inc., 575 McCorkle Blvd, Westerville, OH 43082 <sup>5</sup>National Renewable Energy Laboratory, Golden, CO <sup>6</sup>Laboratory for Electron and X-ray Instrumentation, University of California, Irvine, Irvine, CA 92697

email: matt.law@uci.edu



**Figure S1.** The Na-S binary phase diagram (data from J. Sangster and A. D. Pelton, *J. Phase Equilib.*, 1997, **18**, 89.). Mixtures of Na<sub>2</sub>S and S have eutectics as low as 240°C. There is also a region of binary liquid immiscibility above 253°C near the sulfur-rich end of the system.

## **Single Crystal Structural Determination**



**Figure S2.** A view of the experimentally-determined pyrite unit cell with 95% thermal contours shown for all ions. Red ellipsoids are iron ions; yellow ellipsoids are sulfur ions.

#### Table S1. Refined Atomic Coordinates, Bond Lengths, and Angles.

| Coordinates [in units of fract      | ional lattice constant]      |  |  |  |  |  |
|-------------------------------------|------------------------------|--|--|--|--|--|
| Fe: (0,0,0); (0.5,0.5,0); (0,0.5,0) | 0.5); (0.5,0,0.5)            |  |  |  |  |  |
| S: (0.38490,0.38490,0.38490);       | ; (0.61510,0.61510,0.61510); |  |  |  |  |  |
| (0.88490, 0.38490, 0.11510);        | (0.11510,0.61510,0.88490);   |  |  |  |  |  |
| (0.38490,0.11510,0.88490);          | (0.61510,0.88490,0.11510);   |  |  |  |  |  |
| (0.11510,0.88490,0.38490);          | (0.88490,0.11510,0.61510).   |  |  |  |  |  |
| T                                   |                              |  |  |  |  |  |
| Lengths [A]                         |                              |  |  |  |  |  |
| Fe–S                                | 2.2627(2)                    |  |  |  |  |  |
| S–S                                 | 2.1585(7)                    |  |  |  |  |  |
| Angles [°]                          |                              |  |  |  |  |  |
| S-Fe-S                              | 94.349(3), 85.651(3)         |  |  |  |  |  |
| S–S–Fe                              | 102.345(8)                   |  |  |  |  |  |
| Fe–S–Fe                             | 115.559(6)                   |  |  |  |  |  |

### Crystal data and structure refinement.

| Empirical formula | $FeS_2$   |
|-------------------|-----------|
| Formula weight    | 119.975   |
| Temperature       | 143(2) K  |
| Wavelength        | 0.71073 Å |
| Crystal system    | Cubic     |
| Space group       | P a -3    |

| a = 5.4143(5) Å                                | $\alpha = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b = 5.4143(5) Å                                | $3 = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| c = 5.4143(5) Å                                | $\gamma = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 158.72(3) Å <sup>3</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fe: (0,0,0); (0.5,0.5,0); (0,0.5,0.5           | 5); (0.5,0,0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S: (0.38490,0.38490,0.38490); (0               | 0.61510,0.61510,0.61510);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.88490,0.38490,0.11510); (0                  | 0.11510,0.61510,0.88490);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.38490,0.11510,0.88490); (0                  | 0.61510,0.88490,0.11510);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.11510,0.88490,0.38490); (0                  | 0.88490,0.11510,0.61510).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.021 Mg/m <sup>3</sup>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11.477 mm <sup>-1</sup>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 232                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.33 x 0.25 x 0.11 mm <sup>3</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| gold cuboid                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bruker Apex II                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11.36 to 42.51°.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $-10 \le h \le 8, -10 \le k \le 10, -10 \le l$ | $\leq 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4228                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 190 [R(int) = 0.0373]                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 189                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96.9 %                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.4443 and 0.2429                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SHELXS-97 (Sheldrick, 2008)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SHELXL-97 (Sheldrick, 2008)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 190 / 0 / 9                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.218                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R1 = 0.0159, wR2 = 0.0398                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R1 = 0.0160, wR2 = 0.0399                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.02(10)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.655 and -0.667 e.Å <sup>-3</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                | <i>a</i> = 5.4143(5) Å<br><i>b</i> = 5.4143(5) Å<br><i>c</i> = 5.4143(5) Å<br><i>c</i> = 5.4143(5) Å<br>158.72(3) Å <sup>3</sup><br>4<br>Fe: (0,0,0); (0.5,0.5,0); (0,0.5,0.5)<br>S: (0.38490,0.38490,0.38490); (0<br>(0.88490,0.38490,0.11510); (0<br>(0.38490,0.11510,0.88490); (0<br>(0.11510,0.88490,0.38490); (0<br>5.021 Mg/m <sup>3</sup><br>11.477 mm <sup>-1</sup><br>232<br>0.33 x 0.25 x 0.11 mm <sup>3</sup><br>gold cuboid<br>Bruker Apex II<br>11.36 to 42.51°.<br>-10 $\leq h \leq 8$ , -10 $\leq k \leq 10$ , -10 $\leq l^{2}$<br>4228<br>190 [R(int) = 0.0373]<br>189<br>96.9 %<br>0.4443 and 0.2429<br>SHELXS-97 (Sheldrick, 2008)<br>SHELXL-97 (Sheldrick, 2008)<br>SHELXL-97 (Sheldrick, 2008)<br>190 / 0 / 9<br>1.218<br>R1 = 0.0159, wR2 = 0.0398<br>R1 = 0.0160, wR2 = 0.0399<br>1.02(10)<br>0.655 and -0.667 e.Å <sup>-3</sup> |

# Table S2. Site Occupancy Factors (SOFs) for Fe and S in Pyrite.

\_\_\_\_\_



Figure S3. X-ray tomography images of a flux-grown pyrite crystal. (top) Top view of a 3D reconstruction

of the crystal. (*left column*) Images of a *yz* cut through the crystal. The horizontal blue line denotes the position of the *xy* cut shown in the middle column. The vertical green lines denote the positions of the *xz* cuts shown in the right column. Voids are present in the bottom half of this crystal. (*middle column*) Images of an *xy* cut through the crystal. The vertical red line denotes the position of the *yz* cuts shown in the left column. The horizontal green lines denote the positions of the *xz* cuts shown in the right column. (*right column*) Images of a series of *xz* cuts through the crystal, showing voids only in the lower half of the specimen. The scale bar is 2 mm. See Movie S1 for a rotating 3D reconstruction of this crystal.

| Certifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | te of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sis 4                                                                                           | Alifa Aesar<br>A Johnson Matthey Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product No.:<br>Product:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10621<br>Iron powde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r, -22 mesh, Pura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ronic <sup>®</sup> , 99.998% (                                                                  | metals basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lot No.:<br>B<br>GC<br>F<br>K<br>M<br>M<br>M<br>P<br>P<br>S<br>R<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24733<br>ND<br>ND<br>11<br>Matrix<br>ND<br>1<br>2<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AI ND<br>Ba ND<br>Cd ND<br>Ge ND<br>Li ND<br>Mo ND<br>Sb ND<br>Sr ND<br>Ti ND<br>W ND<br>Ga ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | As ND<br>Bi ND<br>Co ND<br>Cu ND<br>In ND<br>Na ND<br>Na ND<br>Si ND<br>Ta ND<br>Ta ND<br>Zn ND |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Values given<br>alysis is weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in ppm unless oth<br>for weight as dete<br>ND: Not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | renvise noted                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOCTN ANTINGA<br>IN CONTAINTINGA<br>IN CONTAINTINA<br>IN CONTAINTINA<br>IN CONTAINTINA<br>IN CONTAINTINA<br>IN C | t has been electro<br>www.<br>the constant of the | Inically generated at<br>WW.clifc.co<br>Factorial of ar<br>1 cliff action of a<br>1 cliff action of a | nd does not require :                                                                           | a signature.<br>Cena Kora<br>de Dia Science Contactoria<br>de Dia Science Contactoria<br>de Dia Science Contactoria<br>de Dia Science Contactoria<br>de Science Contactori<br>de Science Contactoria<br>de Scie |

Figure S4. Certificate of analysis for a batch of the iron powder used for pyrite flux synthesis.

| Certific                                                                                                                                                                                                                                                                                       | ate of                                                                                                                                                                                                               | Analy                                                                                                                         | /sis                                                                                                                      | Alfa Aesar<br>A Johnson Matthey Company                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                           |                                                                                                                                                                               |
| Product No                                                                                                                                                                                                                                                                                     | .: 10343                                                                                                                                                                                                             |                                                                                                                               |                                                                                                                           |                                                                                                                                                                               |
| Product:                                                                                                                                                                                                                                                                                       | Sulfur piece                                                                                                                                                                                                         | s, Puratronic®, 9                                                                                                             | 9.9995% (met                                                                                                              | als basis)                                                                                                                                                                    |
| Lot No.:                                                                                                                                                                                                                                                                                       | 128Y042                                                                                                                                                                                                              |                                                                                                                               |                                                                                                                           |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Appe<br>Purit                                                                                                                                                                                                        | arance Piece<br>y 99.99                                                                                                       | s<br>95 %                                                                                                                 |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Ag 0.0                                                                                                                                                                                                               | 1 As                                                                                                                          | 0.10                                                                                                                      |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Cd 0.0                                                                                                                                                                                                               | 5 Ci                                                                                                                          | 0.01                                                                                                                      |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Pb 0.0                                                                                                                                                                                                               | o Ni<br>5 S∉                                                                                                                  | 0.05                                                                                                                      |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Si 0.1                                                                                                                                                                                                               | 0 Sr                                                                                                                          | 0.05                                                                                                                      |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Zn 0.0                                                                                                                                                                                                               | 5                                                                                                                             |                                                                                                                           |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                | Values given                                                                                                                                                                                                         | in ppm unless ot                                                                                                              | nerwise noted                                                                                                             |                                                                                                                                                                               |
| This docu                                                                                                                                                                                                                                                                                      | ment has been electro                                                                                                                                                                                                | nically generated a                                                                                                           | nd does not req                                                                                                           | uire a signature.                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                | w                                                                                                                                                                                                                    | ww.alfa.co                                                                                                                    | m                                                                                                                         |                                                                                                                                                                               |
| NORTH AMERICA         GESMA           Tet: +1-803-343-0660 or         Tet: 00000-455           +1-975-521-4300         +49 721 840           Fax: +1-800-322-4757         Fax: 00000-457           Email: info@alfa.com         +49 721 840           Email: info@alfa.com         +49 721 840 | NY UNITED KINGDOM<br>54566 or Tel: 0800-801812 or<br>7780 +44 (0)1524-85056<br>74577 or Fax +44 (0)1524-85056<br>07 300 Fax +44 (0)1524-85068<br>57 300 Fax +44 (0)1524-85068<br>Finall: UKalev8afa.com<br>Balfa.com | FRANCE<br>Tel: 0800 03 51 47 or<br>+33 (03 8862 2000<br>Fax: 0800 10 20 67 or<br>+23 (03 8862 684<br>Email: fiventes@alfa.com | IND44<br>Tel: +91 8008 812424 or<br>+91 8008 812525 or<br>+91 8008 812525<br>Fax: +91 8418 260060<br>Email: Inda@alfa.com | CHENAL KOREA<br>Tel: +86 (912) (557-5020 Tel: +87-3-3140-6020<br>Fax: +86 (712) (557-8020 Tex: +82-3-3140-6022<br>Enalt used insights alta com Email: used annoidate alta com |

Figure S5. Certificate of analysis for a batch of the sulfur powder used for pyrite flux synthesis.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 3050 Soruce Stre                                                                                                                                                                                                                                                | sigma-aldrich.com<br>et. Saint Louis, MO 63103 USA                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | En<br>Out                                                                                                                                                                                                                                                       | Website: www.sigmaaldrich.com<br>nail USA: techserv@sial.com<br>side USA: eurtechserv@sial.com                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Certi                   | icate of Analysis                                                                                                                                                                                                                                               |                                                                                                                                                                           |
| Product Name:<br>Sodium sulfide nonahydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ate - ≥99.99% trace met | als basis                                                                                                                                                                                                                                                       |                                                                                                                                                                           |
| Product Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 431648                  | Na.S. OH.                                                                                                                                                                                                                                                       | 0                                                                                                                                                                         |
| Lot Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MKBK6128V               | Na20 • 3H2                                                                                                                                                                                                                                                      | 0                                                                                                                                                                         |
| Brand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALDRICH                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| CAS Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1313-84-4               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| MDL Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MFCD00149184            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| Formula:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Na2S · 9H2O             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| Formula Weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240.18 g/mol            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| Storage Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Store at 2 - 8 °C       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Constituention                                                                                                                                                                                                                                                  | Denut                                                                                                                                                                     |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Specification                                                                                                                                                                                                                                                   | Result                                                                                                                                                                    |
| Appearance (Color)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | Specification<br>Conforms to Requirements                                                                                                                                                                                                                       | Result<br>Light Yellow                                                                                                                                                    |
| Test<br>Appearance (Color)<br>Colorless to White<br>Appearance (Form)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Specification<br>Conforms to Requirements                                                                                                                                                                                                                       | Result<br>Light Yellow                                                                                                                                                    |
| Test<br>Appearance (Color)<br>Colorless to White<br>Appearance (Form)<br>X-Ray Diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure                                                                                                                                                          | Result<br>Light Yellow<br>Crystals with Chunk(s)<br>Conforms                                                                                                              |
| Test<br>Appearance (Color)<br>Coloriess to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Maior Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed                                                                                                                                             | Result<br>Light Yellow<br>Crystals with Chunk(s)<br>Conforms<br>Conforms                                                                                                  |
| Test<br>Appearance (Color)<br>Colorless to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ponents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed                                                                                                                                             | Result<br>Light Yellow<br>Crystals with Chunk(s)<br>Conforms<br>Conforms                                                                                                  |
| Test<br>Appearance (Color)<br>Coloriess to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Com;<br>Tirtation by Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ponents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %                                                                                                                           | Result<br>Light Yellow<br>Crystals with Chunk(s)<br>Conforms<br>Conforms<br>101.9 %                                                                                       |
| Test<br>Appearance (Color)<br>Colorless to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Comp<br>Titration by Na2S203<br>Iron (Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass                                                                                                                   | Light Yellow<br>Crystals with Chunk(s)<br>Conforms<br>Conforms<br>101.9 %<br>Pass                                                                                         |
| Test<br>Appearance (Color)<br>Colordess to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Comp<br>Titration by Na2S203<br>Iron (Fe)<br>Ammonia (IH44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %                                                                                                      | Result<br>Light Yellow<br>Crystals with Chunk(s)<br>Conforms<br>101:9 %<br>Pass<br>0.002 %                                                                                |
| Appearance (Color)<br>Colorless to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Comp<br>Titration by Na2S203<br>Iron (Fe)<br>Ammonia (NH4)<br>Suffite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | conents                 | Specification           Conforms to Requirements           Crystals or Crystals with Chunks           Conforms to Structure           Confirmed           98.0 - 102.0 %           Pass           ≤ 0.005 %           ≤ 0.015 %                                 | Result           Light Yellow           Crystals with Chunk(s)           Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 % |
| Test<br>Appearance (Color)<br>Colorises to White<br>Appearance (Form)<br>X-Ray Diffraction<br>ICP Major Analysis<br>Confirms Na and S Comp<br>Titration by Na2S203<br>tron (Fe)<br>Ammonia (NH4)<br>Suffite<br>Trace Metal Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponents                 | Specification           Conforms to Requirements           Crystals or Crystals with Chunks           Conforms to Structure           Confirmed           98.0 - 102.0 %           Pass           < 0.005 %                                                     | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 0.1 %                    |
| Test<br>Appearance (Color)<br>Colorises to White<br>Appearance (from)<br>X-Ray Diffraction<br>(for Major Analysis<br>Confirms Na and S Com<br>(from Na Analysis<br>Suffice<br>Suffice<br>Trace Metal Analysis<br>Aluminum (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sonents                 | Specification           Conforms to Requirements           Crystals or Crystals with Chunks           Conforms to Structure           Conforms to Structure           98.0 - 102.0 %           Pass           ≤ 0.005 %           ≤ 0.1 %           ≤ 100.0 ppm | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 0.1 %                    |
| Test<br>Appearance (Color)<br>Colorises to White<br>Appearance (form)<br>X-Ray Diffraction<br>(form)<br>Arago Diffraction<br>(form)<br>Ammonia (NH4)<br>Suffice<br>Trace Metal Analysis<br>Aluminum (A)<br>Barrium (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ponents                 | Specification           Conforms to Requirements           Crystals or Crystals with Chunks           Conforms to Structure           Conforms to Structure           Pass           ≤ 0.005 %           ≤ 0.005 %           ≤ 100.0 ppm                        | Result           Light Yellow           Crystals with Chunk(s)           Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 % |
| Test<br>Appaarance (Color)<br>Coloriess to White<br>Appearance (from)<br>X-Ray Diffraction<br>(for Major Analysis<br>Confirms Na and S Comp<br>Tiration by Nas2SO3<br>tron (Fe)<br>Ammonia (NH4)<br>Suffice<br>Trace Metal Analysis<br>Aluminum (Ai)<br>Barium (Ba)<br>Borron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>< 0.005 %<br>< 0.1 %<br>< 100.0 ppm                                                                            | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 0.1 %                    |
| Test<br>Appearance (Color)<br>Colorless to White<br>Appearance (form)<br>X-Ray Diffraction<br>(form)<br>X-Ray Diffraction<br>(form)<br>Namona (NH4)<br>Suffle<br>Trace Metal Analysis<br>Auminum (A)<br>Barium (Ba)<br>Boron (B)<br>Calcium (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %<br>≤ 0.01 %<br>≤ 100.0 ppm                                                                           | Result           Light Yellow           Crystals with Chunk(s)           Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 % |
| Test Appearance (Color) Colorises to White Appearance (Form) X-Ray Diffraction (CP Major Analysis Confirms Nas and S Comp Titration by Na25203 Confirms Nas and S Comp Titration (Fe) Ammonia (NH4) Suffice Trace Metal Analysis Aluminum (A) Barrium (A) Barrium (B) Boron (B) Calcium (Ca) ton (Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ponents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %<br>≤ 0.11 %<br>≤ 100.0 ppm                                                                           | Result           Light Yellow           Crystals with Chunk(s)           Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 % |
| Test Appearance (Color) Colorises to White Appearance (from) X-Ray Diffraction (Form) X-Ray Diffraction (For Major Analysis Confirms Na and S Comp (Form Na Analysis Confirms Na Analysis Aumonia (NH4) Suffic Trace Metal Analysis Aluminum (A) Barium (Ba) Borron (B) Calcium (Ca) Calcium (Ca) Calcium (Ca) Calcium (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %<br>≤ 0.1 %<br>≤ 100.0 ppm                                                                            | Result           Light Yellow           Crystals with Chunk(s)<br>Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 %        |
| Test Appearance (Color) Coloriss to White Appearance (from) X-Ray Diffraction (Fom) Arayo Diffraction (For Major Analysis Confirms Na and S Comp Titration by Na2S203 (for (Fo) Ammonia (NH4) Suffice Trace Metal Analysis Bruim (Ba) Baruim (Ba) Baru | zonents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %<br>≤ 0.1 %<br>≤ 100.0 ppm                                                                            | Result           Light Yellow           Crystals with Chunk(s)<br>Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 %        |
| Test Appearance (Color) Colorises to White Appearance (from) X-Ray Diffraction (Form) X-Ray Diffraction (For Major Analysis Confirms Na and S Comy Tirration by Nas2X03 tron (Fe) Ammonia (NH4) Sutitte Trace Metal Analysis Ahuminum (Al) Barium (Ba) Boron (B) Calcium (Ca) Toro (Fe) Magnesum (Mg) Manganese (Mn) Atomic Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>08.0 - 102.0 %<br>Pass<br>< 0.005 %<br>< 0.1 %<br>< 100.0 ppm<br>< 100.0 ppm                                                                          | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 0.1 %                    |
| Test Appearance (Color) Colories to White Appearance (Form) X-Hay Diffraction (Form) X-Hay Diffraction (For Major Analysis Confirms Na and S Comp Irranton by Na25203 Irranton by Na25203 Irranton ketal Analysis Atuminum (Al) Barium (Ba) Boron (B) Catclium (Ca) Irron (Fo) Manganese (Mn) Manganese (Mn) Manganese (Mn) Comic Absorption Lihlum (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>Confirmed<br>98.0 - 102.0 %<br>Pass<br>≤ 0.005 %<br>≤ 0.005 %<br>≤ 100.0 ppm<br>≤ 100.0 ppm                                                           | Result           Light Yellow           Crystals with Chunk(s)<br>Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 %        |
| Test<br>Appearance (Color)<br>Colorises to White<br>Appearance (from)<br>X-Ray Ditfraction<br>(form)<br>X-Ray Ditfraction<br>(form)<br>Confirms Na and S Comp<br>Trace Meal Analysis<br>Auminum (Al)<br>Barium (Ba)<br>Barium (Ba)<br>Barium (Ba)<br>Barium (Ca)<br>Calcium (Ca)<br>Chor (Fe)<br>Magnaesum (Mg)<br>Magnaesum (Mg)<br>Magnaesum (Mg)<br>Magnaesum (Mg)<br>Magnaesum (Mg)<br>Atomic Absorption<br>Lithium (L)<br>Potassium (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | conents                 | Specification<br>Conforms to Requirements<br>Crystals or Crystals with Chunks<br>Conforms to Structure<br>08.0 - 102.0 %<br>Pass<br>< 0.005 %<br>< 0.1 %<br>< 100.0 ppm<br>< 100.0 ppm                                                                          | Result           Light Yellow           Crystals with Chunk(s)<br>Conforms           101.9 %           Pass           0.002 %           < 0.1 %                           |
| Test Appearance (Color) Coloress to White Appearance (from) X-Ray Diffraction (Fom) X-Ray Diffraction (Fom) Ammonia (NH4) Suffice Trace Metal Analysis Aluminum (Ai) Barium (Bi) Boron (B) Calcium (Ca) Kongensum (Mg) Manganese (Mn) Atomic Absorption Lithium (Li) Potassium (K) Cesium (Cs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zonents                 | Specification Conforms to Requirements Conforms to Structure Confirmed 98.0 - 102.0 % Pass $\leq 0.005 \%$ $\leq 0.1 \%$ $\leq 100.0 ppm$                                                                                                                       | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 100.0 ppm                |
| Test Appearance (Color) Coloress to White Appearance (from) X-Ray Diffraction (Form) X-Ray Diffraction (For Major Analysis Confirms Na and S Comp Titration by Na25203 iron (Fe) Ammonia (NH4) Suffice Trace Metal Analysis Aluminum (Ai) Barrum (B) Boron (B) Calcium (Ca) Iron (Fe) Magnesium (Mg) Magness (Mn) Atomic Absorption Lithium (L) Potassium (K) Cesium (Cs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conents                 | Specification Conforms to Requirements Crystals or Crystals with Chunks Conforms to Structure Confirmed 98.0 - 102.0 % Pass < 0.0.05 % < 0.1 % < 100.0 ppm  5 100.0 ppm                                                                                         | Result           Light Yellow           Crystals with Chunk(s)           Conforms           101.9 %           Pass           0.002 %           < 100.0 ppm                |
| Test Appearance (Color) Colorises to White Appearance (Form) X-Ray Diffraction (Form) X-Ray Diffraction (For Major Analysis Confirms Na and S Comp Tratation by Na2S203 tron (F6) Ammonia (NH4) Suifite Trace Metal Analysis Adminum (A) Barium (Ba) Boron (B) Calcium (Ca) Calcium (C | conents                 | Specification Conforms to Requirements Crystals or Crystals with Chunks Conforms to Structure 98.0 - 102.0 % Pass < 0.005 % < 0.1 % < 100.0 ppm                                                                                                                 | Result           Light Yellow           Crystals with Chunk(s)           Conforms           Conforms           101.9 %           Pass           0.002 %           < 0.1 % |

Figure S6. Certificate of analysis for a batch of the Na<sub>2</sub>S powder used for pyrite flux synthesis.

|             |     | Tariant | T           |           |              |              | Julia i Di    | Des l'an     | 0           |       |     |      |
|-------------|-----|---------|-------------|-----------|--------------|--------------|---------------|--------------|-------------|-------|-----|------|
|             |     | Typical | Irace Eleme | nt Compos | tion (ppm by | y weight) An | aiysis via Di | rect Reading | g Spectrome | eter  |     |      |
| Туре        | AI  |         |             | Fe        |              | Mg           | Mn            |              | Na          |       |     |      |
| 214         | 15  | 0.4     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 0.6          | 0.8         | 1.0   | 0.9 | <5   |
| 219         | 15  | 0.4     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 1.0          | 0.8         | na    | 0.9 | <5   |
| 254         | 15  | 0.6     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 2.2          | 1.2         | na    | 1.6 | <5   |
| 214A        | 15  | 0.4     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 0.6          | 0.8         | 1.0   | 0.9 | <1   |
| 214 Rod     | 15  | 0.4     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 0.6          | 0.8         | 1.0   | 0.9 | 10   |
| 214 LD/8C   | 15  | 0.4     | 0.05        | 0.2       | 0.0          | 0.1          | <.0.05        | 0.6          | 0.8         | 1.0   | 0.9 | 10   |
| 224/224 Rod | 8   | 0.6     | <0.009      | 0.2       | 0.2          | <0.1         | <0.05         | <0.2         | <0.2        | 1.4   | 0.3 | 10   |
| 224 LD      | 15  | 0.4     | <0.009      | 0.2       | 0.001        | 0.1          | <0.05         | 0.4          | <0.05       | 1.0   | 0.9 | 10   |
| 244         | 8   | 0.6     | <0.05       | 0.2       | 0.2          | <0.1         | <0.05         | <0.2         | <0.2        | 1.4   | 0.3 | 10   |
| 244 Rod     | 8   | 0.6     | <0.009      | 0.2       | 0.2          | <0.1         | <0.05         | <0.2         | <0.2        | 1.4   | 0.3 | 10   |
| 244 LD      | 8   | 0.6     | <0.009      | 0.2       | 0.001        | 0.1          | <0.05         | 0.2          | <0.05       | 1.4   | 0.3 | 10   |
| 124         | 15  | 0.4     | <0.05       | 0.2       | 0.6          | 0.1          | <0.05         | 0.6          | 0.8         | 1.0   | 0.9 | <6   |
| 144         | 8   | 0.6     | <0.009      | 0.2       | 0.2          | <0.1         | <0.05         | <0.2         | <0.4        | 1.4   | 0.6 | <6   |
| 098         | 0.2 | <0.05   | <0.03       | 0.08      | <0.05        | <0.05        | <0.02         | <0.05        | <0.05       | <0.02 | na. | 10   |
| 095         | 11  | <0.05   | <0.03       | 0.08      | <0.05        | <0.05        | <0.02         | <0.05        | <0.05       | <0.02 | na  | < 10 |
| 510,520,530 | 15  | 0.4     | <0.05       | 0.2       | 0.5          | 0.1          | <0.05         | 0.6          | 0.8         | 1.0   | 0.9 | 50   |
| 612, 632    | 8   | 0.6     | <0.05       | 0.2       | 0.3          | <0.1         | <0.05         | 0.5          | 0.7         | 1.4   | 0.2 | 50   |
| 667, 587    | 15  | 0.4     | <0.05       | 0.2       | <0.005       | 0.1          | <0.05         | <0.02        | <0.01       | 1.0   | 0.9 | 70   |
| 568, 588    | 8   | 0.6     | <0.05       | 0.2       | <0.005       | <0.1         | <0.05         | <0.02        | <0.01       | 1.4   | 0.2 | 70   |

Figure S7. Typical trace element composition of the type 214 quartz ampoules used in this study.



**Figure S8.** (a) Comparison of fits to the Hall data of Figure 3 assuming zero compensation (yellow traces) and finite compensation (red traces). For the latter, the compensation ratio  $N_A/N_D$  was allowed to float freely to achieve a best fit. We found a best fit at 56% compensation with the following bulk parameters:  $N_D = 1.0 \times 10^{18} \text{ cm}^{-3}$ ,  $E_C - E_D = 185 \text{ meV}$ ,  $N_{A,\text{bulk}} = 5.6 \times 10^{17} \text{ cm}^{-3}$ ,  $E_A - E_V = 50 \text{ meV}$ . (b) Comparison of  $E_D$  and the Fermi level  $E_F$  as a function of inverse temperature for the uncompensated case (yellow) and 56% compensated case (red).



Figure S9. (a) Mobility and (b) concentration of free electrons (red markers) and holes (green markers) as calculated from the Hall data in Figure 3 of the text assuming validity of the unipolar approximation at all temperatures [i.e.,  $n,p = 1/|R_{He}|$ ]. Note that this approximation is violated in regions of mixed electron and hole conduction (i.e., the intrinsic region and the temperature range of 80-150 K). Solid and dashed curves denote the values used to parameterize the model. These values match the data in the unipolar regions (> 150 K for electrons and < 80 K for holes). Electron mobility in the bulk,  $\mu_{e,bulk}$ , follows a  $T^{2.5}$  dependence at high T, as is common for phonon scattering [C. Jacoboni, C. Canali, G. Ottaviani and A. A. Quaranta, Sold State Electron., 1977, 20, 77]. Hole mobility in the bulk,  $\mu_{h,bulk}$ , is assumed to be 1/3 of  $\mu_{e,bulk}$  at all T. Note that the value of  $\mu_{e,bulk}$  is irrelevant at low T and  $\mu_{h,bulk}$  is irrelevant at all T due to the low carrier concentrations. Thus, no assumptions about bulk mobility at low T were necessary to model the data. For example, including ionized impurity scattering at low T had no effect on the fits (as expected). Hole mobility in the surface layer,  $\mu_{\rm h,surface}$ , was estimated from low T data using the unipolar approximation. We found values ranging from 0.1 to 10 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> and used the best fit result of  $\sim 2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$  in the model. Electron surface mobility is irrelevant due to negligible carrier concentration and was set to  $\mu_{e,surface} = \mu_{h,surface}$  for simplicity. Note that the concentration of holes used to model the surface layer (dotted green line in (b)) is five orders of magnitude higher than the data points because  $p_{\text{bulk}}$  is calculated from the data is with respect to the bulk while  $p_{\text{surface}}$  is calculated with respect to just the surface layer, which is about 10<sup>5</sup> times thinner than the bulk.



**Figure S10.** Hall data modeled using the DFT DOS(*E*) values and the Fermi-Dirac distribution function. Zero compensation is assumed. Parameters used are  $N_{\text{D,bulk}} = 5.6 \times 10^{19} \text{ cm}^{-3}$ ;  $E_{\text{C}} - E_{\text{D}} = 380 \text{ meV}$ ;  $N_{\text{A,surface}} = 4.5 \times 10^{19} \text{ cm}^{-3}$ ;  $E_{\text{A}} - E_{\text{V}} = 50 \text{ meV}$ ;  $d_{\text{s}} = 4.4 \text{ nm}$ ;  $\mu_{\text{h}} = 2.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ .



**Figure S11.** Comparison of DOS(*E*) functions calculated using the normal parabolic band approximation (red) versus density functional theory (GGA+U, blue), on both (a) logarithmic and (b) linear scales. These DOS(*E*) functions were used in the text to model the Hall data and electronic band gap of pyrite. DFT results are taken from J. Hu, Y. Zhang, M. Law and R. Wu, *Phys. Rev. B*, 2012, **85**, 085203.



**Figure S12.** Comparison of the calculated Fermi level as a function of inverse temperature using the parabolic DOS(E) versus DFT DOS(E) functions. Results are shown for both intrinsic pyrite and pyrite with a deep donor (gray line). Zero compensation is assumed.



Figure S13. Self-consistent calculations of  $|R_{H}(T)|$  for a homogeneous semiconductor at different combinations of doping and  $\mu(T)$ . (a) Plots of the mobility functions used to calculate the various scenarios. (b)  $|R_H(T)|$  for Scenario #1: intrinsic pyrite with ideal  $\mu(T)$  behavior for both electrons and holes and  $\mu_e/\mu_h$ = 25 at all temperatures. R<sub>H</sub> is negative at all temperatures because n = p but  $\mu_e > \mu_h$ . |R<sub>H</sub>| increases monotonically as the carriers freeze out. (c) Corresponding band diagram showing  $E_{\rm F}$  (dotted line), n (red line), p (green line),  $E_V$ , and  $E_C$  versus inverse temperature. (d)  $|R_H(T)|$  for Scenario #2: intrinsic pyrite with  $\mu_{\rm h} > \mu_{\rm e}$  below ~90 K. Since n = p, R<sub>H</sub> takes the sign of whichever carrier has the higher mobility. Therefore, R<sub>H</sub> changes sign at ~90 K. Since the flux crystals are far from intrinsic, this scenario is not relevant to the case at hand. (e) Corresponding band diagram. (f)  $|R_H(T)|$  for Scenario #3:  $N_D = 0$ ,  $N_A = 10^{18}$  cm<sup>-3</sup> ( $E_A - E_V$ = 50 meV) with ideal  $\mu(T)$  behavior for both electrons and holes and  $\mu_e/\mu_h = 25$  at all temperatures. R<sub>H</sub> is negative in the intrinsic region because  $n \approx p$  but  $\mu_e > \mu_h$ . R<sub>H</sub> changes sign when p > n outside of the intrinsic region due to the acceptor doping. This R<sub>H</sub> behavior is typical for doped semiconductors. (g) Corresponding band diagram. (h)  $|R_{\rm H}(T)|$  for Scenario #4:  $N_{\rm D} = 10^{19} \, {\rm cm}^{-3} (E_{\rm C} - E_{\rm D} = 390 \, {\rm meV})$ ,  $N_{\rm A} = 0$  with  $\mu_{\rm h} >> \mu_{\rm e}$  below ~90 K due to an exponentially increasing  $\mu_h(T)$  with decreasing temperature. This type of non-physical  $\mu_{\rm b}(T)$  function is required in order to overcome the large difference between n and p and force R<sub>H</sub> to change sign at low temperatures. The physical irrelevance of this scenario illustrates the practical impossibility of an  $R_H$  sign change occurring in a homogeneous doped semiconductor outside of the intrinsic region. (i) Corresponding band diagram. All calculations employed parabolic DOS(E) functions.



**Figure S14.** Low-temperature resistivity data and fits. (a) Logarithmic derivative plots to linearize  $\rho(T) = \rho_0 \exp[(T_0/T)^p]$  in order to determine the value of *p*. Here,  $\ln(W) = \ln\left(-\frac{d(\ln \rho)}{d(\ln T)}\right)$ . Data are shown for four pyrite single crystals (including the crystal used in Figure 3 of the text), plus a mixed-phase thin film annealed at 400°C from Reference 30 (Zhang 2013). The value of *p* ranges from 0.53 to 0.58. (b) The data plotted versus  $T^{1/2}$ , along with fits to the linear regions at low temperature. The value of  $T_0$  ranges from 3550 to 6350 K. (c) Plots versus  $T^{-1}$  and (d)  $T^{-1/4}$ .



**Figure S15.** Band transport and ES VRH fits of the MR(*H*) data for the sample in Figure 4. (a) 70 K data and (b) 300 K data. Qualitatively, the fits are equally good at both temperatures. However, the fits at 70 K result in unphysically large values of  $\mu$  and  $T_0$ , suggesting that the MR is neither simple band nor ES VRH transport. At 300 K, the value of  $\mu$  is quite reasonable, but that of  $T_0$  is again unphysically large. The ES VRH fits shown here assume a = 6.6 Å.



**Figure S16.** Temperature dependence of the magnetoresistance (MR). (a) Data for a representative sample from 30-300 K at three different values of the magnetic field. (b) Detail view of the low-temperature region, including fits to Eq. 2. While the data at 30 and 60 kOe are too scattered to determine the temperature dependence of the MR, the MR at 90 kOe clearly increases with decreasing temperature in qualitative agreement with Eq. 2. However, an unphysically large value of  $T_0$  is required to fit the data.



**Figure S17.** Typical examples of calculated  $E_F$  and carrier concentrations as a function of inverse temperature for the (a) bulk and (b) surface layers. Zero compensation is assumed.



**Figure S18.** (a) Temperature dependence of the Hall coefficient and conductivity of a boron-doped silicon single crystal as a function of crystal thickness. The data (80-350 K) are independent of thickness and surface polishing, showing that silicon lacks the type of conductive surface layer found on pyrite. The dotted/dashed curves are fits from the model (giving an acceptor concentration of  $1.8 \times 10^{16}$  cm<sup>-3</sup> and an ionization energy of 52 meV, close to the accepted value of 45 meV for boron in silicon). DSP = double side polished. (b) Magnified view of the temperature range from 80-350 K. (c) Carrier concentration and (d) mobility for the as-received 500 µm thick wafer. These control experiments provide additional confirmation that our model and interpretation of the pyrite data are correct.



**Figure S19.** (111) rocking curves for a pyrite slab as a function of surface modification. FWHM values are given in the legend in units of arcseconds.



**Figure S20.** SEM and AFM images of the surface of a pyrite crystal (*top*) as cut with a diamond saw, (*middle*) after fine polishing, and (*bottom*) after etching the surface with piranha solution.



**Figure S21.** Cross-sectional SEM images of a pyrite crystal before and after a 5 min piranha etch. The etch rate is approximately 8 nm/s, assuming a constant activity of the piranha solution over 5 min.



**Figure S22.** Calculated equilibrium band diagram of the pyrite surface at 300 K assuming the presence of a narrow-gap surface layer ( $E_g = 0.4 \text{ eV}$ , 0.7 nm thick). In the bulk,  $E_F$  is located ~190 meV below the conduction band edge (consistent with  $N_D = 6 \times 10^{19} \text{ cm}^{-3}$  and  $E_C - E_D = 390 \text{ meV}$  from Hall data). At the surface,  $E_F$  is ~100 meV above the valence band edge (consistent with UPS data). Equilibration of bulk with surface results in relatively weak band bending of ~250 meV, which represents the upper limit for the pyrite  $V_{OC}$ . Thus, tunneling is unnecessary to explain the low  $V_{OC}$  if a narrow-gap surface layer is present. An inversion layer (p > n) approximately 3.0 nm thick is also created (denoted by the vertical dotted line). The inversion layer is separated from bulk by a depletion layer approximately 140 nm thick (defined here as  $n = 0.95n_{\text{bulk}}$ ). The bulk pyrite band gap is assumed to be 0.76 eV.



**Figure S23.** XRD patterns of a pyrite (111) single crystal before and after heating to progressively higher temperatures in ultrapure nitrogen. (a)  $2\theta$ - $\omega$  scans. (b) Omega scans with a grazing incidence angle of 1.0 degree. The sample was heated within 60 minutes to the temperature indicated, held at that temperature for 1 minute, and then cooled to room temperature within 60 minutes prior to data acquisition. The data labeled "550°C dwell" were acquired after holding the sample at 550°C for 1 hour.



**Figure S24.** (a) The valence and conduction band density of states calculated by DFT using the GGA (red) and GGA+U (blue) levels of theory. (b) The integrated density of states for the conduction band at the two levels of theory. DFT results are taken from J. Hu, Y. Zhang, M. Law and R. Wu, *Phys. Rev. B*, 2012, **85**, 085203.



**Figure S25.** Compilation of literature values for the pyrite band gap. Dashed curves are extrapolations/interpolations from the variable-temperature experimental data (solid curves or points). The light blue crosses (optical data), light blue stars (electrical data modeled with the parabolic DOS(E)), and red stars (electrical data fit with simple Arrhenius lines) are the results of the present study.

#### References for Figure S25

| Marinace 1954:    | J. C. Marinace, Phys. Rev. 1954, 96, 593.                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sasaki 1955:      | A. Sasaki, Minear. J., 1955, 1, 290.                                                                                                                      |
| Bither 1968:      | T. A. Bither, R. J. Bouchard, W. H. Cloud, P. C. Donohue and W. J. Siemons, <i>Inorg. Chem.</i> , 1968, 7, 2208.                                          |
| Horita 1974:      | H. Horita and T. Suzuki, Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, 1974, <b>25</b> , 124. |
| Ennaoui 1986:     | A. Ennaoui and H. Tributsch, J. Electroanal. Chem., 1986, 204, 185.                                                                                       |
| Ennaoui 1986:     | A. Ennaoui, S. Fiechter, W. Jaegermann and H. Tributsch, <i>J. Electrochem. Soc.</i> , 1986, <b>133</b> , 97.                                             |
| Karguppikar 1988: | A. M. Karguppikar and A. G. Vedeshwar, Phys. Stat. Sol. (a), 1988, 109, 549.                                                                              |
| Schlegel 1976:    | A. Schlegel and P. Wachter, J. Phys. C, 1976, 9, 3363.                                                                                                    |
| Kou 1978:         | W. W. Kou and M. S. Seehra, Phys. Rev. B, 1978, 18, 7062.                                                                                                 |
| Ferrer 1990:      | I. J. Ferrer, D. M. Nevskala, C. de las Heras and C. Sanchez, <i>Solid State Commun.</i> 1990, <b>74</b> , 913.                                           |
| Jaegermann 1983:  | W. Jaegermann and H. Tributsch, J. Appl. Electrochem., 1983, 13, 743.                                                                                     |
| Heras 1994:       | C. de las Heras, I. J. Ferrer and C. Sanchez, J. Phys.: Condens. Matter, 1994, 6, 10177.                                                                  |
| Yang 1995:        | TR. Yang, JT. Yu, JK. Huang, SH. Chen, MY. Tsay and YS. Huang, <i>J. Appl. Phys.</i> 1995, <b>77</b> , 1710.                                              |
| Cervantes 2002:   | P. Cervantes, Z. Slanic, F. Bridges, E. Knittle and Q. Williams, J. Phys. Chem. Solids, 2002, 63, 1927.                                                   |
| Tsay 1993:        | MY. Tsay, YS. Huang and YF. Chen, J. Appl. Phys. 1993, 74, 2786.                                                                                          |



**Figure S26.** Optical extinction spectra of (a) a 65  $\mu$ m thick pyrite crystal and (b) a 250  $\mu$ m thick silicon crystal as a function of temperature. The crystals are polished on both sides. Data were acquired in 20 K increments. Inset are plots of band gap extracted from the raw extinction data after correcting for sample thickness and the dispersion of the refractive index. The inset in (b) compares the temperature dependence of the band gap for both materials. The room-temperature band gap of pyrite and silicon is 0.94 eV and 1.11 eV, respectively.



**Figure S27.** Representative plots of Hall coefficient versus magnetic field for a pyrite crystal as a function of temperature (65-300 K). In the unipolar region (T > 150 K), R<sub>H</sub> is constant with field (in other words, the Hall voltage is linear with magnetic field). In the mixed-carrier region (intermediate temperatures), R<sub>H</sub> decreases with increasing field. Finally, for T < 90 K, R<sub>H</sub> becomes noisy but appears to flatten out with increasing field at higher values of applied field.

Derivation of logarithmic derivative expression used to linearize the equation  $\rho(T) = \rho_0 \exp[(T_0/T)^p]$ :

 $\rho = \rho_0 \exp[(T_0/T)^p]$ 

Take log:  $\ln(\rho) = \ln(\rho_0) + (T_0/T)^p$ 

$$\frac{d(\ln \rho)}{d(\ln T)} = ?$$

Make substitution:  $u = \ln(T) \rightarrow T = e^u$ 

Replace T with  $e^u$ :  $\ln(\rho) = \ln(\rho_0) + (T_0/e^u)^p$ 

$$\ln(\rho) = \ln(\rho_0) + T_0^p e^{-pu}$$

Take derivative with respect to *u*:  $\frac{d(\ln \rho)}{du} = -pT_0^p e^{-pu} = -p(T_0/e^u)^p$ 

Change back to T:  $\frac{d(\ln \rho)}{d(\ln T)} = -p(T_0/T)^p$ 

Multiply by -1 and take log again:  $\ln\left(-\frac{d(\ln \rho)}{d(\ln T)}\right) = \ln(p) + \ln(T_0/T)^p$ 

$$\ln\left(-\frac{d(\ln \rho)}{d(\ln T)}\right) = \ln(p) + p\ln(T_0) - p\ln(T) = \text{constant} - p\ln(T)$$