Supporting Information

A carbon-free, precious-metal-free, high-performance O₂ electrode for regenerative fuel cells and metal-air batteries

Jia Wei Desmond Ng, Maureen Tang, and Thomas F. Jaramillo*

Department of Chemical Engineering, 381 North-South Mall, Stanford University, Stanford, CA 94305 USA * Author to whom correspondence should be addressed, jaramillo@stanford.edu

Supporting Figures

Figure S1. ORR and OER overpotentials required to reach -5 and 10 mA.cm⁻² respectively for MnO_x -SS electrodes as a function of MnO_x loading.

Figure S2. Rotating electrode voltammograms displaying the oxygen reduction and evolution activities of uncalcined and calcined MnO_x-SS electrodes, and an uncoated stainless steel mesh.

Figure S3. Photograph displaying (left) bare stainless steel mesh and (right) MnO_x electrodeposited on stainless steel mesh.

Figure S4. SEM image of bare stainless steel mesh.

Figure S5. Survey XPS spectra of stainless steel mesh (i) before and (ii) after electrodeposition of MnO_x.

Figure S6. Rotating electrode voltammograms displaying the oxygen reduction activities of the Pt/C-SS electrode after cycling in either a purely ORR-relevant potential range (0.05 V to 1.1 V vs. RHE at 10 mV.s⁻¹) or a combined ORR and OER-relevant potential range (0.05 V to 1.7 V vs. RHE at 10 mV.s⁻¹).

Figure S7. SEM images of MnO_x electrodeposited on stainless steel mesh after electrochemical stability testing at different magnifications.

Figure S8. High resolution XPS spectra ($Mn-2p_{1/2}$ region) of MnO_x -SS electrode (i) before and (ii) after electrochemical testing. The difference in binding energy between the $Mn-2p_{1/2}$ peak and its satellite peak for both samples are shown.

Figure S9. Symmetric cells used to determine the source of the instability seen for the cell with the MnO_x -SS O_2 electrode shown in Figure 5. (a) Symmetric H₂ cell with Pt/C catalyst. The cell was cycled between - 0.3 V to 0.3 V at 50 mV and 15 s intervals, and a total of 20 cycles were performed. (b) Symmetric O_2 cell with MnO_x -SS electrodes. The cell was cycled between -1 V to 1 V at 250 mV and 15 s intervals for 11 cycles.

Table S1. List of prior work on bifunctional O_2 electrodes applied to energy storage devices based on O_2 - H_2O chemistries. \dagger

	Gas		Presence of	Presence		
Catalysts	diffusion	Flectrolyte	precious	of carbon	Application	Poforonco
Catalysis	alastrada	Liectionyte	metals at O ₂	at O ₂	Application	Reference
	electrode		electrode	electrode		
Electrodeposited	Stainless	Commercial anion	No	No		This work
MnO _x	steel	exchange membrane	NO	NO	ALIVI-ORFC	
MnO _x /C and Ni/C	Carbon	Commercial anion	No	Yes	AEM-URFC	1
	paper	exchange membrane				
Cu _{0.6} Mn _{0.3} Co _{2.1} O ₄	Carbon	Lab-made anion	No	Yes	AEM-URFC	2
	paper	exchange membrane				
LaSr ₃ Fe ₃ O ₁₀	Au-coated	Commercial anion	Yes	No	AEM-URFC	3
	mesh	exchange membrane				
Pt/IrO ₂	Carbon paper	Commercial Nafion 212	Yes	Yes	PEM-URFC*	4
		proton exchange				
		membrane				
CoO/CNT and Ni-Fe	Carbon paper and Ni foam	6 М КОН	No	Yes	Zn-air battery	5
layered double						
hydroxide						
MnO ₂ nanotubes	Carbon paper	6 М КОН	No	Yes	7n-air	6
with Co ₃ O ₄					batton	
nanoparticles					Dattery	
MnO ₂ nanotube	Carbon paper	6 М КОН	No	Yes	Zn-air	7
and CNT composite					battery	/
MnO _x nanowires	Ni foam	6 М КОН	No	Yes	Zn-air	Q
on carbon					battery	0
Co ₃ O ₄ nanowires	Stainless steel	6 М КОН	No	No	Zn-air	Q
					battery	5
MnCo ₂ O ₄ /C on	Carbon	1 M LiClO ₄ in propylene	No	Yes	Li-O ₂ battery	10
graphene	paper	carbonate		105		
MnO ₂ decorated	Ni mesh	1 M LiNO ₃ and 0.5 M	Yes	Yes	Li-O ₂ battery	11
with Au and Pd and						
mixed with carbon						
Co ₃ O ₄	Ni foam	1 M LiClO ₄ in propylene	No	No	Li O battory	12
		carbonate (PC)	NO		LI-O ₂ Dattery	/
Co ₃ O ₄	Ni foam	1 M LiTFSI in TEGDME	No	No	Li O battory	13
		(organic)				_
MnO ₂ /C	Ni mesh	Glass microfiber filter	No	Yes		
		separator soaked in 1			Li-O ₂ battery	14
		M LiTFSI in TEGDME				
Mn _{1.8} Fe _{0.2} O ₃ / C	Ti mesh	1 M LITFSI / PC	No	Yes	Li-O ₂ battery	15
MnOOH nanowires	NI: C					16
on carbon	INI TOAM	PC or dimethoxyethane	INO	Yes	LI-O ₂ battery	10

⁺ There are many other examples of bifunctional O₂ electrodes for PEM-URFCs but all of them require precious metal catalysts due to the acidic environment of the device.

Additional References

- 1. J. W. Desmond Ng, Y. Gorlin, T. Hatsukade and T. F. Jaramillo, *Advanced Energy Materials*, 2013, doi: 10.1002/aenm.201300492.
- 2. X. Wu and K. Scott, *Journal of Power Sources*, 2012, **206**, 14-19.
- 3. T. Takeguchi, T. Yamanaka, H. Takahashi, H. Watanabe, T. Kuroki, H. Nakanishi, Y. Orikasa, Y. Uchimoto, H. Takano, N. Ohguri, M. Matsuda, T. Murota, K. Uosaki and W. Ueda, *Journal of the American Chemical Society*, 2013, **135**, 11125-11130.
- 4. Y. Zhang, H. Zhang, Y. Ma, J. Cheng, H. Zhong, S. Song and H. Ma, *Journal of Power Sources*, 2010, **195**, 142-145.
- 5. Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang and H. Dai, *Nat Commun*, 2013, **4**, 1805.
- 6. G. Du, X. Liu, Y. Zong, T. S. A. Hor, A. Yu and Z. Liu, *Nanoscale*, 2013, **5**, 4657-4661.
- 7. Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li and Z. Chen, *Electrochimica Acta*, 2012, **69**, 295-300.
- 8. J.-S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu and J. Cho, *Nano Letters*, 2011, **11**, 5362-5366.
- 9. D. U. Lee, J.-Y. Choi, K. Feng, H. W. Park and Z. Chen, *Advanced Energy Materials*, 2013, DOI: 10.1002/aenm.201301389.
- 10. H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui and H. Dai, *Energy & Environmental Science*, 2012, **5**, 7931-7935.
- 11. K.-N. Jung, A. Riaz, S.-B. Lee, T.-H. Lim, S.-J. Park, R.-H. Song, S. Yoon, K.-H. Shin and J.-W. Lee, *Journal of Power Sources*, 2013, **244**, 328-335.
- 12. Y. Cui, Z. Wen and Y. Liu, *Energy & Environmental Science*, 2011, **4**, 4727-4734.
- 13. A. Riaz, K.-N. Jung, W. Chang, S.-B. Lee, T.-H. Lim, S.-J. Park, R.-H. Song, S. Yoon, K.-H. Shin and J.-W. Lee, *Chemical Communications*, 2013, **49**, 5984-5986.
- 14. H. Cheng and K. Scott, *Journal of Power Sources*, 2013, **235**, 226-233.
- 15. H. Minowa, M. Hayashi, K. Hayashi, R. Kobayashi and K. Takahashi, *Journal of Power Sources*, 2013, **244**, 17-22.
- 16. L. Zhang, X. Zhang, Z. Wang, J. Xu, D. Xu and L. Wang, *Chemical Communications*, 2012, **48**, 7598-7600.