Supporting Information

Improvement of Open-Circuit Voltage and Photovoltaic Properties of

2D-Conjugated Polymers by Alkylthio Substitution

Chaohua Cui, ^{ab} Wai-Yeung Wong ^{*b} and Yongfang Li^{*ac}

- ^a Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: <u>liyf@iccas.ac.cn</u> (Y. Li)
- ^b Institute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Waterloo Road, Hong Kong,
 P. R. China. E-mail: rwywong@hkbu.edu.hk (W.-Y. Wong)
- ^c College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Figure S1. LUMO and HOMO levels for the polymer repeat unit. Calculations were carried out by DFT/B3LYP/6-31G (d, p) level on the polymers with a chain length of 2. Methyl groups were used to replace alkyl substituents here to simplify the calculations.

Figure S2. X-ray diffraction pattern of PBDTT-S-TT:PC₇0BM (1:1.5, w/w) blend films processed without or with DIO additive.

Figure S3. The topography (left) and the corresponding phase (right) images $(3 \times 3 \ \mu m)$ of PBDTT-S-TT:PC₇₀BM (1:1.5, w/w) blend films processed without (a, b) or with (c, d) DIO additive.