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Further Discussion and Derivation of Two Subcell Model 

Here we derive the expressions used in the manuscript.  We approximate the sun as a blackbody 

radiator with a temperature of TS (6000° K) and with a solid angle θs (0.267°).
1
 The data in the 

Letter are derived instead for subcells under 1 sun AM1.5D G173-03 illumination.  The 

expression for subcell power can easily be derived for the AM1.5D spectrum by substituting the 

numerical integral of AM1.5D photon flux for the 6000°K blackbody radiation.  However, a 

simple analytic solution for the open-circuit voltage for the AM1.5D cannot be determined 

because the integral can only be solved numerically.  Therefore we derive the equations for the 

two subcell model under blackbody illumination so the reader may observe the direct impact of 

radiative coupling and spectral window on subcell voltage. 

 

Each subcell is maintained at an ambient temperature To (300° K) and is reradiating photons with 

energies above its bandgap within the half angle of emission, θE.
1,2

  We assume no concentration 

and a perfect back reflector such that θE = π/2.
3
  We also assume that there are no reflection 

losses and that any subcell perfectly absorbs photons with energies equal to or above its bandgap. 

 

We first analyze subcell #1 because it is not affected by subcell #2. We are only observing 

structures with few enough subcells such that downshifting is the only relevant form of radiative 

coupling.  Subcell #1 acts as a single junction cell and will have an identical analysis to the 

Shockley-Queissar derivation.
1
 The power extracted from subcell #1 is: 
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where V is the operating voltage of a subcell, J is the current produced in a subcell, q is the 

charge of an electron, h is Planck’s constant, and c is the speed of light, and k is Boltzmann’s 

constant.  Because each subcell has a perfect back reflector on the rear interface, the radiative 

prefactor (
   

    (    
      

 )) reduces to show that radiative emission only occurs out the front 

interface (
   

    ).      

Now we calculate the power extracted from subcell #2.  Unlike the analysis for subcell #1, there 

will be three current terms in the expression for subcell #2 because there are three photon fluxes.  

The first current term comes from the input spectrum, which only includes photons within the 

spectral window, Δ.  The current term is from reradiating photons from subcell #1, and this is 

calculated using the dark current expression from equation (1s) and multiplying by B to account 

for the actual fraction of photons distributed from subcell #1 to subcell #2.  Finally, there is a 

dark current term associated with the photons reradiated from subcell #2.   
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The operating voltage is calculated when the power in Equations (1s) and (2s) is maximized.   

We also examine the open-circuit voltage condition, which occurs when there is no current 

produced in the cell.  Again, we begin by deriving the expression for subcell #1 and show the 

condition for open-circuit voltage below:  
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The photon flux of input photons is exactly balanced by the photon flux of reradiating photons.  

We perform this same analysis for subcell #2: 
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We can describe this added flux of reradiating photons from subcell #1 as the right side of 

equation (3s) multiplied by the geometric factor B.  We then obtain 
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We then rearrange the integrals in the right hand side of equation (5s) for the following revised 

expression.  
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Equation (6s) now looks very similar to the open-circuit voltage condition for a single junction 

solar cell but has an additional term to account for the spectral width and radiative coupling.  

Using a standard approximation for these integrals that is valid for low concentration and for Eg 

>> kTs and Eg – qVoc >> kTo, an approximated expression for Voc,2 is derived.
4
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where the terms α1 and αΔ are 1+2kTS/Eg+2(kTS/Eg)
2
 and α1+2Δ/Eg+(Δ/Eg)

2
+2kTSΔ/Eg, 

respectively, and are correction terms for approximating the integrals.
5,6

  In Equation (7s), we 

identify the first term as the Carnot efficiency and the second term to be an entropic loss due to 

lack of angle restriction, reducing the available free energy in the system.
5,7

  The third and fourth 

terms as corrections to account for the broadband range of the spectra.  We also recognize these 

first four terms together comprise the open-circuit voltage of a single junction cell.  We combine 

these terms and represent them as Voc,2
SQ

 and simplify to obtain our final expression: 
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A decrease in spectral window (Δ) will decrease the open-circuit voltage.  However, this loss is 

minimized for higher values of B and is eliminated when B=1 because all photons are 

downshifted from subcell #1 to subcell #2. 

 

 

Additional Experimental Methods 

 

Alta Devices provided thin-film, epitaxially lifted-off GaAs solar cells for the 

experimental portion of this study.  The light I-V response of the cell was measured under 100 

mW cm
-2

 of simulated AM1.5G illumination using a Keithley 238 high current source measure 

unit.  A longpass filter was placed above the cell to block higher energy photons in the input 

spectrum, varying the spectral window.  The filters used blocked wavelengths shorter than 430 

nm (Chroma ET430lp), 550 nm (Newport 10LWF-550-B), 580 nm (Chroma HQ580lp), 630 nm 

(Chroma HQ630lp), 650 nm (Thorlabs FEL650), 700 nm (Thorlabs FEL700), and 850 nm 

(Thorlabs 850nm). 

 

To analyze the data properly, we modify Equation (2s) to better describe the experimental 

conditions and nonidealities of the cell.  We first reduce Equation (2s) for the B=0 case. 
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We recognize that our input spectra is not a blackbody radiator, so we adjust the input current to 

account for the 1 sun AM1.5G spectrum by integrating over the photon flux NAM1.5G.  

Additionally, we include the absorbance of the semiconductor slab (a(E)) and a reflection loss 

due to the lack of an antireflection coating (R).  We also add the external radiative efficiency 

(ERE) to account for nonradiative recombination and parasitic losses in the back reflector.  The 

ERE is a good measure of cell quality because it is related to the internal radiative efficiency, or 

how likely a cell is to recombine radiatively instead of nonradiatively.
8,9
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Finally, we adjust this expression to include series (Rs) and shunt resistances (Rsh) following 

expressions from literature.
10

   This yields the following recursive function: 
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We calculated reflection losses by comparing the measured Jsc to the maximum theoretical Jsc for 

a GaAs cell under AM1.5G illumination.  This was equal to 35%, which corresponds to the 

reflection losses between air and a high index semiconductor.  The external radiative efficiency 

was calculated in a similar way, comparing the actual Voc to the maximum Voc attainable with the 

realistic Jsc.  Accounting for the nonradiative losses of the experimental cells corresponds to an 

ERE of 3.9% which is comparable to other GaAs solar cells of similar growth quality and back 

reflector type.
4,5

  Finally, we calculated series and shunt resistances of 2.5 and 2    Ω/cm
2
, 

respectively, by inspecting the slope of the I-V curve near Voc and Jsc.
10

  Incorporating these 

parameters provided an excellent fit to our data. 

 

 

Additional Equations for Full Multijunction Ensemble Efficiency Calculations 

 

The efficiencies for Fig. 3 were determined by summing the power produced in each subcell and 

dividing by the total power in the solar spectrum under 1 sun AM1.5D G173-03 conditions.  

These also assume that radiative emission is the only loss mechanism, yielding the maximum 

efficiency possible for the geometry.  Also, all cases with radiative coupling assume that 

absorption of radiatively emitted photons only occurs when the absorbing subcell has a smaller 

bandgap than the emitting subcell.  This is valid in the regime we study  number of subcells ≤ 

20).  The power produced in a given subcell for the B cases (i.e. architectures that allow radiative 

coupling between subcells and back reflectors on all subcells) presented in the paper (Pn,B) is a 

more general case of Equation (2s), as shown below: 
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where n refers to the current subcell and n-1 is the subcell with the next highest bandgap.  

Because we only discuss downshifting structures, we first calculate the power produced in the 

subcell with the highest bandgap and then continue in order of decreasing bandgap such that the 

subcell with the lowest bandgap is calculated last.  We again note that each subcell has a perfect 

back reflector on the rear interface so the radiative prefactor (
   

    (    
      

 )) reduces to 

show that radiative emission only occurs out the front interface (
   

    ).    

 

The power produced in a given subcell for the traditional and air gap tandem stack cases can be 

described by a similar equation, which is given below.  Again there are three terms that describe 

the current generated from the spectral window of the sun, the current generated from radiative 

coupling with subcell n-1, and the dark current due to radiative emission.  
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We keep the general form of the radiative prefactor (
   

    
(    

      
 )) to reflect the different 

optical environment of this geometry (i.e. include the index of refraction of the substrates or air 

interface since the subcells are no longer on perfect back reflectors).  Only the bottom subcell 

(n=N) has a back reflector in these tandem stack cases so the radiative prefactor reduces to 
   

    
    

 .  Additionally, the degree of radiative coupling is now determined by the refractive 

index contrast between the top and bottom interfaces (    
     

      
 ⁄ ).  These expressions are 

derived in other studies.
2,3

   

 

The only difference between these two cases is the optical environment.  The traditional tandem 

stack has ntop = 1 and nbot = 3.6 (the refractive index of a III-V semiconductor) while the air gap 

tandem stack has ntop = 1 and nbot = 1.  Although all subcells n>1 in the traditional tandem stack 
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share a perfect top interface with another subcell, we operate in the regime (N ≤ 2   where the 

radiative emission from subcell n+1 does not overlap with the bandgap, and absorption profile, 

of subcell n.  Therefore the relevant top interface for every subcell is air (ntop = 1) in this regime.  

Additionally, this will cause the traditional tandem stack will have a higher degree of radiative 

coupling but a higher dark current because of the index matching between subcells and high 

index contrast of the top air interface.  In the regime of many subcells (N >> 20), the radiative 

emission from subcell n+1 would have to be included and B would have to be adjusted 

accordingly. 

 

The power produced in a selective reflector structure is given below by Equation 14s.  This 

structure has no radiative coupling and therefore the current is comprised only of the generated 

current from the solar spectral window and the radiative dark current.  The radiative prefactor on 

the radiative emission also reduces to 
   

     because the subcells can only radiate out the front face 

due to the selective reflector.  Unlike the previous structures, the radiative emission is restricted 

by energy owing to the selective reflectors
2
 but this effect is negligible in the regime we study (N 

≤ 2  subcells . 
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The power produced by the PSR is given below.  It is very similar to the radiative coupling cases 

discussed earlier, but has two additional terms: (1) Cgeom, which represents the reduced 

concentration from placing cells at an angle relative to the input aperture, (2) RBn, which 

represents the fraction of photons that are reflected back into the same subcell.  Similar to the B 

cases, the radiative prefactor is reduced to 
   

     because the subcells are spatially separated and 

have their own back reflector.  The values for Cgeom, Bn, and RBn are derived in the next section.   
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Calculating Concentration, Radiative Coupling, and Light Trapping for the PSR 

 

 
 

Figure 1s. Schematic of the 45° polyhedral specular reflector (PSR) design studied in the Letter.  The blue cone 

represents the angular range of photons that are reflected back into the same subcell at that example point.  The 

green cone represents the range of angles of photons that are emitted into the next subcell.  The inset shows the 

relevant angles for radiative emission discussed. 

 

A schematic of the polyhedral specular reflector is shown in Figure 1s.  The first subcell always 

covers the full aperture opening to have photons encounter each subcell in order from highest to 

lowest bandgap.  Otherwise the spectrum will not be split properly.  For this Letter, the subcells 

are arranged at a 45° angle.  For a subcell length of L, the aperture of the multijunction cell is 

L/√2.  This geometry will determine both the concentration on each subcell and the final 

destination of the radiatively emitted photons.  For a  5° PSR, the concentration factor is  /√2, 

the ratio of the subcell to the input aperture.    

 

To determine the fraction of photons reflected back into the same subcell (RBn) and the fraction 

of photons downshifted to the next bandgap (Bn), the destination of each photon as a function of 

angle is determined as a function of position and this is averaged over the length of the subcell 

(L).  For the example photons shown in Figure 1s, emitted photons occupying the angles of the 

blue cone (θ1 to θ1’) will be reflected back into the same subcell and represent RBn.  The emitted 

photons occupying the green cone (θ1 to θ2) will be reflected to the next subcell and represent Bn.  

These cones will change as a function of position, so we determine the average angle occupancy 

as a function of x.  Then we integrate that expression over the length of the cell, normalizing by 

L, as outlined below for calculating the fraction of photons reflected back into the same subcell. 
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This same process is repeated for determining the fraction of photons reflected to the next 

subcell.  This yields a Bn of 0.204 for all subcells and an RBn of 0.414 for all subcells except the 

first in the stack (n>1).  The fraction of photons reflected back onto the same subcell is different 

for the first subcell (blue in Figure 1s) because the mirror does not completely cover the first 

subcell, which is a consequence of having the aperture wide enough to project the illuminated 

area across the whole length of the first subcell.  Thus the RB1 of the first subcell is 0.207. 

 

It should also be noted that the geometry of the PSR (angle and aperture size) can be adjusted to 

yield different values for Cgeom, RB, and B.  For example, the aperture size can be reduced which 

will bring the mirror closer to the subcells, increasing the number of angles that fall within the 

cone of light that is reflected back into the same subcell (increasing RB).  However, this also 

reduces the concentration of incident light on each subcell and reduces the number of 

downshifted photons (B).  Additionally, the angle of the PSR can be reduced.  This will decrease 

the concentration loss (aperture to cell length ratio is smaller) but will reduce RB and B. 

 

 
Figure 2s. Efficiency versus number of subcells for different PSR geometries: the 45° PSR presented in the paper 

(black circle), a 45° PSR with a reduced input aperture size (blue triangle), and a 30° PSR (red square).  The inset 

shows the relevant parameters (Cgeom, RB, and B) for each geometry. 

 

Figure 2s shows the efficiency as a function of number of subcells for the three PSR geometries 

and the inset displays the values for Cgeom, RB, and B.  Although the reduced aperture 45° PSR 

has a much larger RB because of the new mirror spacing, the reduced concentration reduces the 

overall efficiency beyond any additional light trapping benefit.  Additionally, changing the angle 

of the PSR to 30° slightly increases the efficiency for a 2 and 3 subcell structure but slightly 

decreases the efficiency beyond the 45° PSR for cells with 4 or more subcells.  The 30° PSR has 

smaller RB and B values than the original 45° PSR but it has a significantly larger concentration 

factor.  Therefore for a small number of subcells (<4), the concentration factor is more important 

and the 3 ° PSR is most efficient.  For a larger number of subcells  ≥  , the increased light 
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trapping and radiative coupling of the 45° PSR makes it more efficient than the 30° PSR.  

Therefore the geometry of the PSR can be optimized depending on the number of subcells and 

performance of the optical components. 

  

 

Bandgaps Used in Figure 3 

 

The following tables depict the bandgaps used in Figure 3 of the paper.  They were optimized 

from the work from E. Warmann, et. al.
11

  

 
No. 

Subcells 
2 3 4 5 6 7 8 9 10 11 

Bandgaps 

(eV) 

0.94 0.94 0.7 0.69 0.69 0.69 0.51 0.51 0.51 0.51 

1.64 1.39 1.12 0.99 0.95 0.94 0.7 0.7 0.7 0.7 

 
 

2 1.55 1.38 1.33 1.15 0.94 0.94 0.94 0.94 

 
  

2.16 1.81 1.61 1.39 1.14 1.14 1.13 1.13 

 
   

2.35 2.01 1.71 1.39 1.39 1.34 1.34 

 
    

2.5 2.07 1.71 1.64 1.53 1.53 

 
     

2.5 2.07 1.91 1.75 1.73 

 
      

2.52 2.23 2 1.94 

 
       

2.66 2.3 2.19 

 
        

2.66 2.5 

 
         

2.89 
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No. 

Subcells 
12 13 14 15 16 17 18 19 20 

Bandgaps 

(eV) 

0.51 0.51 0.5 0.51 0.51 0.5 0.5 0.5 0.5 

0.7 0.7 0.69 0.7 0.7 0.55 0.56 0.54 0.57 

 0.93 0.93 0.77 0.93 0.92 0.7 0.7 0.69 0.7 

 1.12 1.12 0.94 1.11 1 0.77 0.78 0.75 0.78 

 1.33 1.33 1.13 1.22 1.12 0.93 0.93 0.92 0.93 

 1.47 1.47 1.33 1.37 1.22 1.11 1.01 0.99 0.99 

 1.64 1.64 1.47 1.51 1.37 1.2 1.12 1.13 1.12 

 1.81 1.81 1.64 1.64 1.51 1.34 1.22 1.22 1.2 

 2 2 1.81 1.81 1.64 1.44 1.37 1.35 1.33 

 2.23 2.21 1.98 1.98 1.81 1.55 1.51 1.45 1.41 

 2.51 2.42 2.16 2.16 1.98 1.71 1.64 1.55 1.53 

 2.89 2.66 2.38 2.38 2.16 1.86 1.75 1.67 1.65 

 
 

2.98 2.61 2.61 2.38 2 1.89 1.82 1.77 

 
  

2.93 2.89 2.61 2.18 2.02 1.99 1.9 

 
   

3.25 2.89 2.38 2.21 2.16 2.06 

 
    

3.25 2.66 2.4 2.38 2.21 

 
     

3 2.64 2.61 2.37 

 
      

2.95 2.87 2.56 

 
       

3.22 2.83 

 
        

3.16 
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