## Supporting Information

## **Benefits of Very Thin PCBM and LiF Layer for Solution-Processed P-I-N Perovskite Solar Cells**

Jangwon Seo, Sangman Park, Young Chan Kim, Nam Joong Jeon, Jun Hong Noh, Sung Cheol Yoon\* and Sang Il Seok\*

## **Experimental Section**

*Device fabrication*: The patterned ITO substrates were cleaned with ultrasonication in acetone and 2% Helmanex soap in water, followed by washing with de-ionized water and then, in isopropyl alcohol. Finally, the substrates were treated under UV-ozone for 15 min to remove the last traces of the organic residues. A filtered dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS, levios, Al4083) was deposited on the top of the ITO by spin-coating at 3,000 r.p.m. for 60 s and subsequently dried at 150 °C for 20 min. CH<sub>3</sub>NH<sub>3</sub>I was prepared by reaction with hydroiodic acid (30 mL, 57% in water, Aldrich) and methylamine (27.9 mL, 40% in methanol, Junsei Chemical Co., Ltd.) in a 250 mL round-bottomed flask at 0°C for 2 h with stirring. The precipitate was recovered by evaporating the solution at 50°C for 1 h. The product was dissolved in ethanol,

recrystallized using diethyl ether, and dried at 60°C under vacuum for 24 h. The CH<sub>3</sub>NH<sub>3</sub>I and PbI<sub>2</sub> (Aldrich) were stirred in a mixture of dimethyl sulfoxide (DMSO): $\gamma$ -butyrolactone (GBL) (3:7, v/v) at 60°C for 12 h. The perovskite precursor solution of CH<sub>3</sub>NH<sub>3</sub>I and PbI<sub>2</sub> (1:1 molar ratio) was deposited onto PEDOT:PSS/ITO substrate by a consecutive two-step spin-coating process at 1000 r.p.m. and at 4,000 r.p.m. for 20 and 60 s, respectively, and the toluene in final spin-stage was dripped onto the substrate during spin coating. The perovskite-precursor

coated substrate was dried onto a hot plate at 100 °C. Afterwards, the phenyl-C61-butyric acid methyl ester (PCBM) layer was deposited by spin-coating of the different concentration solution (8, 12, 15, 20, and 25 mg ml<sup>-1</sup>) of PCBM (nano-C) at 1200 r.p.m. for 60 s. Finally, the device was completed with evaporation in a high vacuum of Al contact electrodes after evaporation of LiF (~0.5 nm) layer through shadow mask. The active area of Al electrodes in the fabricated device was 0.09 cm<sup>2</sup>. All the devices were encapsulated with glass cap to avoid the oxygen and the moisture.

For a large area photovoltaic module, the patterned ITO-glass substrate has ten ITO strips  $(0.8 \text{ cm} \times 10 \text{ cm})$  each separated by 2 mm wide etched areas, where are interconnected in series. (See Figure 4b) The active area of one cell is adjusted to be 0.6 cm  $\times$  10 cm. All the layers are prepared according to the same process to the fabrication of the unit cell.

*Measurements*: The J–V curves were measured using a solar simulator (Newport, Oriel Class A, 91195A) with a source meter (Keithley 2420) at 100 mA cm<sup>-2</sup> illumination AM 1.5G and a calibrated Si-reference cell certificated by NREL. The J–V curves of all devices were measured by masking the active area with a metal mask of area 0.04 cm<sup>2</sup>. The External quantum efficiency (EQE) was measured using a power source (Newport 300 W Xenon lamp, 66920) with a monochromator (Newport Cornerstone 260) and a multimeter (Keithley 2001).



Figure S1. (a) SEM image of the top surface of a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> film on an ITO/PEDOT:PSS surface. (b) SEM image of the top surface of a PCBM film on an ITO/PEDOT:PSS/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> surface. The thickness of PCBM layer is 55 nm.



Figure S2. (a) Photocurrent density-voltage (*J-V*) characteristics of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-PCBM heterojunction solar cell where the thickness of PCBM layer is ~40 nm. Measurement was carried out under simulated AM 1.5 100 mW cm<sup>-2</sup> sunlight. The inset table shows the photovoltaic performance parameters,  $J_{sc}$  (mA/cm<sup>2</sup>), efficiency (%),  $V_{oc}$  (V), FF and R<sub>shunt</sub> (ohms).

Table S1. Photovoltaic parameters derived from *J-V* measurement for the devices based on CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-PCBM heterojunction solar cells with different PCBM layer thickness.

| Thickness<br>(nm) | J <sub>sc</sub><br>(mAcm <sup>-2</sup> ) | V <sub>oc</sub><br>(V) | FF<br>(%) | PCE<br>(%) |
|-------------------|------------------------------------------|------------------------|-----------|------------|
| 55                | 19.5                                     | 0.844                  | 77.5      | 12.8       |
| 100               | 17.9                                     | 0.816                  | 74.4      | 10.8       |
| 120               | 16.7                                     | 0.803                  | 74.7      | 10.0       |
| 140               | 16.0                                     | 0.789                  | 67.9      | 8.6        |



Figure S3. Photocurrent density-voltage (*J-V*) characteristics of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-PCBM heterojunction device, measured with 10 mV voltage steps and a delay time of 40 ms with different scan directions. The inset table shows the photovoltaic performance parameters,  $J_{sc}$  (mA/cm<sup>2</sup>),  $V_{oc}$  (V), FF (%) and PCE (%).



Figure S4. Normalized PCE of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-PCBM heterojunction device stored for different numbers of days. The encapsulated device is maintained in ambient air under dark.