Improved lithium-sulfur batteries with a conductive coating on the

separator to prevent the accumulation of inactive S-related species at

the cathode-separator interface

Hongbin Yao¹, Kai Yan¹, Weiyang Li¹, Guangyuan Zheng², Desheng Kong¹, Zhi Wei Seh¹, Vijay Kris Narasimhan¹, Zheng Liang¹, Yi Cui^{1,3*}

¹Department of Materials Science and Engineering, ²Department of Chemical

Engineering, Stanford University, Stanford, CA 94305, USA. ³Stanford Institute for

Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand

Hill Road, Menlo Park, CA 94025, USA

*Corresponding author. E-mail: <u>vicui@stanford.edu</u>

Fig.S1 (a) photograph of the cross section of Li-S battery fabricated in a quartz cell. (b) photographs of *In situ* scanning Raman setup.

Calculation of the amount of polysulfides accommodated in the separator. The thickness of the separator is 25 μ m. The porosity of the separator is 50%. Thus, the empty space in one piece of the 1 cm² separator is: 25 μ m * 1cm² * 0.5 = 1.25 μ l. The highest dissolution concentration of Li₂S₈ in electrolyte (1:1, DOL:DME) is ~8 M (the molar concentration was calculated based on sulfur). If the polysulfide (Li₂S₈) diffused into the electrolyte during discharging is 5 M, then the amount of polysulfide

accommodated in the separator is: 1.25 $\mu l * 5 mol/L * 32 g/mol = 0.2 mg$.

Fig.S2 Electrochemical impedance spectroscopy plots of Li–S cells with pristine separator (50 wt.% cathode) and super P coated separator (60 wt.% cathode), respectively.

Fig.S3 Rate capability of Li-S cells with pristine separator (50 wt.% cathode) and super P modified separator (60 wt.% cathode), respectively.

Fig.S4 (a) cycling performance of 70 wt.% sulfur cathode with super P carbon coating on the separator and the cathode, respectively. C/10. (b) SEM image of the surface of super P carbon coating on the cathode at the discharge status (1.7V) after 50 cycles.

Fig.S5 (a-d) SEM images of ketjen black carbon coated separator, multi wall carbon nanotube coated separator, TiO_2 nanoparticles-super P coated separator, and Al_2O_3 nanoparticles-super P coated separator, respectively. Insets are corresponding photos, respectively.

Table S1. The summary of sheet resistance of different coating layers on the surface of the separator.

Coating	Multi-wall	Ketjenblack	Super P	Al ₂ O ₃ NPs	TiO ₂ NPs
materials	CNTs	carbon	carbon	Super P	Super P
Sheet					
resistance	472±86	514±92	1065±104	2780±157	2375±143
(Ω/\Box)					