Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

Supplementary information for

Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase

Sigrun Rumpel, Judith F. Siebel, Christophe Farès, Jifu Duan, Edward Reijerse, Thomas Happe, Wolfgang Lubitz and Martin Winkler

Abbreviations

PETF^{ox}: oxidized PETF

PETF^{red}: reduced **PETF**

Identification of PETF-residues involved in complex formation with HYDA1

Titration experiments were performed with both PETF^{ox} and PETF^{red} as well as fully active HYDA1 and apo-HYDA1 containing only the [4Fe-4S]-part of the H-cluster^{1, 2} (Fig. 1 in the main text and Figs. S1-S3). Since, not unexpectedly, the titration of PETF^{red} with active HYDA1 was virtually identical to that of apo-HYDA1 (Fig. S1), only the apo-HYDA1 results are discussed in the main text. Both PETF^{red} and PETF^{ox} titrations with HYDA1 and FNR confirmed the previously identified binding surfaces (Table S1). Interestingly, $\Delta\delta_{HN}$ for PETF^{red} were increased about 4-fold compared to PETF^{ox} and almost unchanged at a 3-times lower excess of HYDA1 (Fig. 1 in the main text and Fig. S2b) indicating a higher affinity of PETF^{red} than PETF^{ox} for HYDA1. For PETF^{red}, the additionally significant $\Delta\delta_{HN}$ for residues G47-V49, F71 and Y78 are probably secondary effects due to a conformational change in the neighboring regions (Y35-C45 and L73-V76) that coordinate the [2Fe-2S]-cluster. This conformational change is most likely related to electron transfer from PETF^{red} to HYDA1. Surprisingly, the larger difference in the observed $\Delta\delta_{HN}$ for D19 and D58 is more pronounced for PETF^{ox} than for PETF^{red} although PETF^{red} forms the reactive electron transfer complex (Fig. S3).

Table S1 | Summary of the largest chemical shift perturbations of PETF upon FNR and HYDA1addition and shortest intermolecular distance for the PETF/FNR complex structure 1GAQ.PETF residues identified as important for protein binding are labelled by grey background.

PETF			PETF/FNR complex ^a		
Δδ _{HN} (ppm) upon HYDA1-binding	residue	Δδ _{HN} (ppm) upon FNR-binding	residue(s) closest to the PETF residue	minimum distance (Å)	
0.003	D19	0.055	E19 ^c	11.9	
0.004	Y21	0.025	K153	5.4	
0.007	L23 ³	0.016	E154	6.1	
0.014	$\mathbf{D24}^2$	0.014	E154	6.5	
0.009	A25 ¹⁰	0.019	K301	6.9	
0.013	$\mathbf{E27}^2$	0.01	K301, K304	3.4, 3.1	
0.009	$\mathbf{E28}^2$	0.013	K301, R305	1.7, 3.8	
0.005	A29 ¹⁰	0.008	K301	3.8	
0.001	G30 ^{10, 11}	0.014	K301, F297	4.2, 5	
0.007	L31	0.01	K301	6.3	
0.005	D32	0.011	F297	3.8	
0.006	V54	0.014	K35	13.8	
0.005	D55	0.019	K33	10.4	
0.002	Q56	0.025	K33	7.2	
0.003	S57 ¹⁰	0.007	K33	4.5	
0.006	D58 ^{2, 10}	0.042	N30, K33, K153	3.1, 3.4, 4.9	
0.012	Q59 ¹⁰	0.015	K35, K33	2.8, 3.8	
disappeared	S60 ²	disappeared	N30, K33, P34	2.5, 3.2, 2.3	
disappeared	F61 ²	disappeared	V92	2.2	
0.034	L62 ^{10, 11}	0.034	K91, K35	4.3, 4.9	
0.013	D63 ^{2, 10}	0.02	K91	2	
0.02	D64 ¹⁰	0.017	K88	2.6	
0.021	A65 ¹⁰	0.017	K88	5.1	
0.03	Q66	0.018	K91	2.9	
0.006	Y78	0.015	K153	8.3	
0.006	H88 ³	0.011	K275	7.8	
0.01	Q89 ³	0.01	K275	10.2	
0.02	E90 ²	0.011	K88, K91	7.2, 7.2	
0.004	E91 ²	0.007	K88	7.2	
0.005	A92	0.027	R93, Y120	7.6, 7.2	
0.062	L93	0.046	K85	4.9	
0.04	Y94 ^{10, 11}	0.041	N86	5.8	

^abased on the X-ray structure for the PETF/FNR complex from *maize leaf* (1GAQ).

^bE19 is the N-terminal residue of FNR in 1GAQ. 18 N-terminal residues are missing in the X-ray structure.

Fig. S1 | (**a,b**) Overlay of ¹H-¹⁵N TROSY-HSQC spectra of PETF^{red} with binding partner at ratios of 1:0 (red), 1:1 (orange) and 1:5 (cyan) shown for PETF^{red}:apo-HYDA1 (**a**) and PETF^{red}: active HYDA1 (**b**). (**c**) Weighted averages of the ¹H and ¹⁵N backbone chemical shift changes plotted versus the residue number at a 5-fold excess of apo-HYDA1 (blue line) and active HYDA1 (magenta bars) upon binding to PETF^{red}.

Fig. S2 | (**a**) Overlay of ¹H-¹⁵N TROSY-HSQC spectra of ¹⁵N-labelled PETF^{red} in the absence (red) and presence (blue) of HYDA1 at a 1:1 molar ratio. (**b**) Amide backbone chemical shift changes of PETF^{ox} and PETF^{red} upon HYDA1-binding. Weighted averages of the ¹H and ¹⁵N backbone chemical shift changes plotted versus the residue number at a 15-fold excess of HYDA1 for PETF^{ox} (bars) and a 5-fold excess of HYDA1 for PETF^{red} (blue line). The coloured bars correspond to **Fig. 3**.

Fig. S3 | Differences between HYDA1- and FNR-binding to PETF^{red} and PETF^{ox}. Weighted averages of the amide backbone ¹H and ¹⁵N chemical shift changes ($\Delta\delta_{HN}$) upon protein binding are plotted versus the residue number for PETF^{red} (a,c) and for PETF^{ox} (b,d). (a,b) Chemical shift changes between free and bound PETF are calculated for a 5- and 15-fold excess of binding partner, respectively. Bars indicating the results for HYDA1 are colored blue and green lines indicate results obtained with FNR. (c,d) Differences of the average chemical shift changes for FNR- and HYDA1-binding were determined as $\Delta\delta_{HN}$ (HYDA1)- $\Delta\delta_{HN}$ (FNR) and residues with larger chemical shift changes for HYDA1 are shown as blue bars and as green bars for FNR.

Fig. S4 | Schematic representation of the PETF/HYDA1 (a) and the PETF/FNR complex (b).

	D19		D58	
PETFCr	YKVTLKTPSGDKTIECPA <mark>D</mark> TYILDAAEEAG	LDLPYS <mark>C</mark> RAGA <mark>C</mark> SS <mark>C</mark> AGKVAAGTV	DQS <mark>D</mark> QSFLDDAQMGNGFVLT <mark>C</mark>	VAYPTSDCTIQTHQEEALY-
FDX VC	YKVTFKTPSGDKVVEVAD <mark>D</mark> VYLLDAAEEAG	MDLPYS <mark>C</mark> RAGA <mark>C</mark> SS <mark>C</mark> AGKIVSGTV	DQS <mark>D</mark> QSFLDDKQMEAGFVLT <mark>C</mark>	VAYATSDLVILTNQEEGLY-
FDX <i>Cf</i>	YKVTLKTPSGEETIECPE <mark>D</mark> TYILDAAEEAG	ldlpys <mark>c</mark> raga <mark>c</mark> ss <mark>c</mark> agkvesgev	DQS <mark>D</mark> QSFLDDAQMGKGFVLT <mark>C</mark>	VAYPTSDVTILTHQEAALY-
FDX <i>Ds</i>	YMVTLKTPSGEQKVEVSP <mark>D</mark> SYILDAAEEAG	VDLPYS <mark>C</mark> RAGS <mark>C</mark> SS <mark>C</mark> AGKVESGTV	DQS <mark>D</mark> QSFLDDDQMDSGFVLT <mark>C</mark>	VAYATSDCTIVTHQEENLY-
FDX At	YKVKFITPEGEQEVECEE <mark>D</mark> VYVLDAAEEAG	ldlpys <mark>c</mark> rags <mark>c</mark> ss <mark>c</mark> agkvvsgsi	DQS <mark>D</mark> QSFLDDEQMSEGYVLT <mark>C</mark>	VAYPTSDVVIETHKEEAIM-
FDX Zm	YNVKLITPEGEVELQVPD <mark>D</mark> VYILDQAEEDG	IDLPYS <mark>C</mark> RAGS <mark>C</mark> SS <mark>C</mark> AGKVVSGSV	DQS <mark>D</mark> QSYLDDGQIADGWVLT <mark>C</mark>	HAYPTSDVVIETHKEEELTGA
FDX <i>Ps</i>	YKVKLVTPDGTQEFECPS <mark>D</mark> VYILDHAEEVG	IDLPYS <mark>C</mark> RAGS <mark>C</mark> SS <mark>C</mark> AGKVVGGEV	DQS <mark>D</mark> GSFLDDEQIEAGFVLT <mark>C</mark>	VAYPTSDVVIETHKEEDLTA-
FDX S	YTVKLITPDGESSIECSDDTYILDAAEEAG	ldlpys <mark>c</mark> raga <mark>c</mark> st <mark>c</mark> agkitagsv	DQS <mark>D</mark> QSFLDDDQIEAGYVLT <mark>C</mark>	VAYPTSDCTIETHKEEDLY-
FDX N	FKVTLINEAEGTKHEIEVPD <mark>D</mark> EYILDAAEEQG	YDLPFS <mark>C</mark> RAGA <mark>C</mark> ST <mark>C</mark> AGKLVSGTV	DQS <mark>D</mark> QSFLDDDQIEAGYVLT <mark>C</mark>	VAYPTSDVVIQTHKEEDLY-
FDX Te	YKVTLV-RPDGSETTIDVPE <mark>D</mark> EYILDVAEEQG	ldlpfs <mark>c</mark> raga <mark>c</mark> st <mark>c</mark> agkllegev	DQS <mark>D</mark> QSFLDDDQIEKGFVLT <mark>C</mark>	VAYPRSDCKILTNQEEELY

Fig. S5 | **Sequence alignment of different plant-type ferredoxins.** PETF sequences of different photosynthetic organisms are compared comprising representative species from algae, higher plants and cyanobacteria. N-terminal sequence parts have been trimmed in reference to the sequence homology to mature PETFCr excluding the chloroplast transit peptide. Positions D19 and D58 of PETFCr which promote selective recognition of FNR are indicated by a magenta background colour. A yellow background marks cysteine residues that participate in the ligation of the [2Fe-2S]-cluster. Other parts with strict sequence conservancy are indicated by a grey background colour. PETFCr: ferredoxin I of *C. reinhardtii* (protein ID: XP_001692808), FDX *Vc*: ferredoxin I of *Volvox carteri f. nagariensis* (protein ID: XP_002958725), FDX *Cf*: Ferredoxin of *Chlorella fusca* (protein ID: P56408), FDX *Ds*: ferredoxin I of *Dunaliella salina* (protein ID: P00239), FDX *At*: ferredoxin I of *Arabidopsis thaliana* (protein ID: NP_172565), FDX *Zm*: ferredoxin 1 of *Zea mays* (protein ID: NP_001105345), FDX *Ps*: ferredoxin I of *Pisum sativum* (protein ID: P09911), FDX *S*: ferredoxin I of *Synecocystis* sp. PCC 6803 (protein ID: NP_442127), FDX *N*: ferredoxin I of *Nostoc* sp. PCC 7120 (protein ID: NP_488188), FDX *Te* : ferredoxin I of *Thermosynechococcus elongatus* BP-1 (protein ID: NP_681799).

Fig. S6 | **Analysis of purified proteins by SDS–PAGE visualized by Coomassie staining.** 1: 30 μg HYDA1; 2: 25 μg wt-FNR; 3: 25 μg FNR-K83L; 4: 25 μg FNR-K89L; 5: 7 μg wt-PETF; 6: 7 μg PETF-D58A; 7: 7 μg PETF-D19A/D58A; 8: 5 μg PETF-D19A.

Fig. S7 | Adjustment of compound concentrations of the proflavine dependent *in vitro* assay for light-driven H_2 production. Test series with increasing concentrations of EDTA, PF and PETF were screened for the highest yield of photoproduced H_2 . The indicated concentrations (red framed bars) were chosen as standard system parameters for all PF-dependent measurements.

References

- 1. D. W. Mulder, E. S. Boyd, R. Sarma, R. K. Lange, J. A. Endrizzi, J. B. Broderick and J. W. Peters, *Nature*, 2010, **465**, 248-251.
- J. Esselborn, C. Lambertz, A. Adamska-Venkatesh, T. Simmons, G. Berggren, J. Noth, J. Siebel, A. Hemschemeier, V. Artero, E. Reijerse, M. Fontecave, W. Lubitz and T. Happe, *Nat. Chem. Biol.*, 2013, 9, 607-609.
- 3. M. Winkler, S. Kuhlgert, M. Hippler and T. Happe, J. Biol. Chem., 2009, 284, 36620-36627.
- 4. P. N. Palma, B. Lagoutte, L. Krippahl, J. J. G. Moura and F. Guerlesquin, *FEBS Lett.*, 2005, **579**, 4585-4590.
- 5. G. Kurisu, M. Kusunoki, E. Katoh, T. Yamazaki, K. Teshima, Y. Onda, Y. Kimata-Ariga and T. Hase, *Nat. Struct. Biol.*, 2001, **8**, 117-121.
- 6. K. Sybirna, P. Ezanno, C. Baffert, C. Léger and H. Bottin, *Int. J. Hydrogen Energy*, 2013, **38**, 2998-3002.