Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Semi-Crystalline Photovoltaic Polymers with Efficiency Exceeding 9% in a ~300 nm Thick Conventional Single-Cell Device

T. L. Nguyen,^a H. Choi,^b S.-J. Ko,^b M. A. Uddin,^a B. Walker,^b S. Yum,^a J.-E. Jeong,^a M. H. Yun,^b T. J. Shin,^c S. Hwang,^a J. Y. Kim,^{*b} and H. Y. Woo^{*a}

^a Department of Nanofusion Engineering, Department of Cogno-Mechatronics Engineering, Pusan National University, Miryang 627-706, Korea

^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea

^c Pohang Accelerator Laboratory, San 31, Hyoja-dong, Pohang 790-784, Korea

Synthesis of monomers

The intermediates $(1\sim3)$ and monomers $(M1\sim M4)$ were prepared by modifying the procedures reported previously.¹⁻³

4,7-Bis(5-trimethylstannylthiophen-2-yl)-2,1,3-benzothiadiazole (M1). Yield: 90%. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17 (d, J=3.45 Hz, 2H), 7.87 (s, 2H), 7.29 (d, J=3.45 Hz, 2H), 0.43 (s, 18H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 152.5, 144.9, 140.3, 136.1, 128.2, 125.8, 125.7, -8.14. HRMS (EI): calcd for C₂₀H₂₄N₂S₃Sn₂, m/z (M⁺) = 627.9146, found: 627.9138.

4,7-Bis(5-trimethylstannylthiophen-2-yl)-5-fluoro-2,1,3-benzothiadiazole (M2). 5-Fluoro-4.7dibromo-2,1,3-benzothiadiazole (1.0 g, 3.2 mmol), 2-tributylstannylthiophene (3.0 g, 8.0 mmol), tris(dibenzylideneacetone)dipalladium(0) (4 mol%) and tri(o-tolyl)phosphine (8 mol%) were added in a 30 mL microwave vial. The vial was sealed and purged with nitrogen. Chlorobenzene (10 mL) was added to the vial. The reaction mixture was heated at 80 °C for 10 min and at 140 °C for 60 min in a microwave reactor. After the reaction was completed, the solvent was removed under reduced pressure and the compound (2), 5-fluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole, was purified by column chromatography (eluent: hexane/CHCl₃ = 1/1). Yield: 95%. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.25 (d, J=3.90 Hz, 1H), 8.12 (dd, J=3.90 Hz, J=1.20 Hz, 1H), 7.78 (d, J=12.90 Hz, 1H), 7.55 (dd, J=5.10 Hz, J=1.20 Hz, 1H), 7.50 (dd, J=5.10 Hz, J=1.20 Hz, 1H), 7.22 (m, 2H). A solution of 2 (0.6 g, 1.9 mmol) in anhydrous tetrahydrofuran (THF, 20 mL) was cooled down to -78 °C under nitrogen. A solution of lithium diisopropylamide (LDA) was prepared from the reaction of diisopropylamine (0.76 g, 7.5 mmol) and 1.6 M n-BuLi (4.7 mL, 7.5 mmol) in 2 mL THF, which was added to the above solution dropwise. After stirring for 1 h at -78 °C, 1 M trimethylstannyl chloride (7.5 mL, 7.5 mmol) was added and reacted for another 1 h. The reaction was quenched by addition of water and the organic layer was extracted with ether, washed with brine and dried over anhydrous MgSO₄. After the solvent was removed under reduced pressure, the residue was recrystallized from ethanol to give M2. Yield: 85%. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.30 (d, J=2.85 Hz, 1H), 8.19 (d, J=3.30 Hz, 1H), 7.79 (d, J=12.90 Hz, 1H), 7.32 (d, J=2.85 Hz, 1H), 7.29 (d, J=3.30 Hz, 1H), 0.43 (s, 18H). HRMS (EI): calcd for C₂₀H₂₃F₁N₂S₃Sn₂, m/z (M⁺) = 645.9051, found: 645.9046.

4,7-Bis(5-trimethylstannylthiophen-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (M3). Yield: 96%. ¹H S2

NMR (300 MHz, CDCl₃): δ (ppm) 8.33 (d, J=3.15 Hz, 2H), 7.35 (d, J=3.15 Hz, 2H), 0.43 (s, 18H). HRMS (EI): calcd for C₂₀H₂₂F₂N₂S₃Sn₂, m/z (M⁺) = 663.8957, found: 663.8944.

1,4-Dibromo-2,5-bis(2-hexyldecyloxy)benzene (M4). Yield: 80%.¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.06 (s, 2H), 3.80 (d, J=5.70 Hz, 4H), 1.77 (m, 2H), 1.54-1.27 (br, 48H), 0.90 (m, 12H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 150.0, 118.0, 110.9, 72.8, 37.8, 31.9, 31.8, 31.2, 30.0, 29.6, 29.5, 29.3, 26.8, 26.7, 22.7, 14.1.

Fig. S1 Torsional profiles for (a) thiophene-difluoro BT and (b) thiophene-dimethoxybenzene (yellow: sulfur, green: fluorine, red: oxygen). (c) The most stable conformation for PPDTBT, PPDTFBT and PPDT2FBT. (*) Methoxy substituents are replaced by ethyl groups in PPDT2FBT.

Fig. S2 Calculated binding energies of HT-type cofacial dimeric structures for PPDTBT, PPDTFBT and PPDT2FBT. (*) Methoxy substituents are replaced by ethyl groups in PPDT2FBT. (red: oxygen, yellow: sulfur, green: fluorine)

Fig. S3 Cyclic voltammogram of three polymers.

Fig. S4 Calculated electronic structure of frontier orbitals.

Fig. S5 *J-V* characteristics of (a) PPDTBT, (b) PPDTFBT and (c) PPDT2FBT based PSCs with different polymer:PC₇₀BM blend ratios (solvent: o-dichlorobenzene).

Polymer	D:A ratio	J _{sc} (mA cm⁻²)	V _{oc} (V)	FF	PCE (%)
	1:1	7.94	0.77	0.62	3.77
PPDTBT	1:1.5	9.77	0.76	0.58	4.27
	1:2	8.50	0.73	0.59	3.63
	1:1	10.5	0.69	0.60	4.38
PPDTFBT	1:1.5	10.6	0.76	0.59	4.72
	1:2	9.03	0.74	0.57	3.80
	1:1	12.5	0.79	0.71	6.94
PPDT2FBT	1:1.5	12.9	0.78	0.71	7.18
	1:2	11.7	0.78	0.69	6.34

Table S1 Device characteristics of polymer: $PC_{70}BM$ PSCs with different D:A blend ratios (solvent: o-dichlorobenzene).

Active layer	J _{sc} (mA cm⁻²)	V _{oc} (V)	FF	Initial PCE (%)	TA time ^a (h)	Final PCE after TA (%)	PCE decrement after TA (%)	Ref.
P3HT:PC₀₀BM	8.93	0.54	0.65	3.11	10	1.00	67	[4]
P3HNT:PC ₆₀ BM	7.55	0.64	0.63	3.03	10	1.74	43	[4]
TPD-Br16:PC ₇₀ BM	11.70	0.73	0.66	5.60	72	4.00	26	[5]
P3HT:NC ₇₀ BA	10.73	0.83	0.66	5.88	20	4.89	17	[6]
PPDT2FBT:PC ₇₀ BM	12.9	0.78	0.71	7.18	200	6.25	13	Current work

 Table S2 Comparison of photovoltaic characteristics and device stability.

^a TA: Thermal annealing at 130 °C. ^bDevice was prepared using a o-dichlorobenzene solvent.

 Table S2-1
 Thermal cycling test protocol.

	ISOS-T-1 (thermal cycling)				
	Test environment	Dark			
	Load	Open circuit			
Testing setup	Storage tomperature	Cycle between RT and 130°C by			
Testing setup	Storage temperature	cycling on/off hot plate			
	Storage R.H.	Nitrogen-filled glove box			
	Characterization light source	Solar simulation			
	Temperature	130°C			
	JV measurement	Intermediate procedure			
Testing protocol	Min. measurement interval	Gradually increased annealing time (See			
resting protocor	Characterization temperature	Poom temperature			
	Characterization temperature	Monitor			
		None			
	Time	200 hours			
	Characterization light source	$AM = 1.5G (100 \text{ mW/cm}^2)$			
	Instantaneous performance				
	parameters	PCE			
	Stability performance parameters	See Fig. 2b			
Output		Thermal annealing at 130°C and			
1	Storage temperature/R.H.	measurement at RT under nitrogen			
		atmosphere			
	IPCE	None			
	Description of measurement	See experimental section 4.3 for detailed			
	protocol and setup	description			
	Characterization light source	AM 1.5G reference spectral irradiation			
	Temperature	RTD			
	R.H. monitoring	Nitrogen			
Required equipment	Storage	Hot plate with capability to cycle			
		between RT and 130°C			
	JV measuring setup	Intermediate procedure			
	IPCE measuring system	None			

Fig. S6 (a) *J-V* characteristics (w/o TA: without thermal annealing, w/ TA: with thermal annealing) and (b) EQE of polymer: $PC_{70}BM$ PSCs prepared from a chlorobenzene solution without processing additives.

	Thermal annealing ^a	J _{sc} (mA/cm²)	V _{oc} (V)	FF	PCE (%)
PPDTBT	No	10.40	0.74	0.54	4.13
	Yes	10.30	0.80	0.61	5.02
PPDTFBT	No	8.14	0.76	0.55	3.36
	Yes	6.87	0.82	0.64	3.58
PPDT2FBT	No	6.46	0.81	0.61	3.22
	Yes	5.08	0.86	0.64	2.78

Table S3 Device characteristics of polymer: PC₇₀BM PSCs (solvent: chlorobenzene).

^a Thermal annealing at 130 °C for 10 min

Fig. S7 *J-V* characteristics of PPDT2FBT:PC₇₀BM PSCs with variable film thickness.

Polymer	DPE	Thickness of active layer (nm)	J _{sc} (mA cm⁻²)	V _{oc} (V)	FF	PCE (%)
PPDT2FBT —	No	290	4.30	0.78	0.26	2.07
	NO	140	6.46	0.81	0.61	3.22
	Vaa	290	15.73	0.78	0.71	8.64
	Tes	140	13.57	0.78	0.74	7.79

Table S4 Device characteristics of PPDT2FBT:PC $_{70}$ BM PSCs with variable film thickness.

Fig. S8 Temporal stability of polymer: $PC_{70}BM$ PSCs (a) without and (b) with DPE at an annealing temperature of 130 °C for 200 h (P3HT-based device for comparison). All devices were prepared from chlorobenzene.

Fig. S9 AFM topography images of PPDT2FBT:PC₇₀BM without (left) and with (right) MeOH treatments. (solvent: CB:DPE, 98:2 vol%).

Fig. S10 Photovoltaic data of PPDT2FBT:PC₇₀BM-based PSCs certified by KIER (solvent: CB:DPE (98:2 vol%), MeOH treatment on top of the active layer).

Solvent (additive)ª	Active layer	J _{sc} (mA cm⁻²)	V _{oc} (V)	FF	Best EQE (%)	Best PCE (%)	Ref.
CB (DIO)	PBDTTT-CF:PC ₇₀ BM	15.20	0.76	0.67	69	7.73	[7]
CB (DIO)	PTB7:PC ₇₀ BM	14.5	0.74	0.69	68	7.40	[8]
DCB (DIO)	PBDTTT-C-T:PC ₇₀ BM	17.48	0.74	0.59	75	7.59	[9]
CB (DIO)	PTDBD2:PC ₇₀ BM	13.0	0.89	0.65	N/A	7.60	[10]
DCB (DIO)	PBDTTT-ST:PC ₇₀ BM	16.35	0.69	0.66	75	7.81	[11]
DCB (DIO)	PBDT-TFQ:PC ₇₀ BM	17.90	0.76	0.58	86	8.00	[12]
CB (CN)	PBDTTPD: PC ₇₀ BM	12.60	0.97	0.70	N/A	8.50	[13]
CB (DPE)	PPDT2FBT:PC ₇₀ BM	15.73	0.78	0.71	82	8.64 9.39 (MeOH treatment)	Current work

Table S5 Comparison of photovoltaic characteristics with previously reported high-efficiency PSCs.

^aCB: chlorobenzene; DCB: *o*-dichlorobenzene; DIO: 1,8-diiodooctane; CN: 1-chloronaphthalene; DPE: diphenyl ether.

Fig. S11 J-V characteristics of (a)~(c) hole-only and (d)~(f) electron-only devices based on polymer: $PC_{70}BM$ blend films with various film thickness (solvent: CB:DPE = 98:2 vol%). Blue lines represent fits of the curves using the Mott-Gurney relationship.

	Hole-	Only	Electro	Electron-Only		
Material	Film Thickness (nm)	μ _h ª (cm²/Vs)	Film Thickness (nm)	μ _e ^b (cm²/Vs)	μ _h /μ _e	
	250	2.7 × 10 ⁻⁴	210	3.7 × 10 ⁻⁴	0.7	
PPDTBT	345	3.1 × 10⁻⁴	370	2.4 × 10 ⁻⁴	1.3	
	475	3.8 × 10⁻⁴	465	2.4 × 10 ⁻⁴	1.6	
	260	5.4 × 10 ⁻⁴	230	4.3 × 10 ⁻⁴	1.3	
PPDTFBT	375	5.1 × 10 ⁻⁴	380	3.7 × 10⁻⁴	1.4	
	450	6.0 × 10 ⁻⁴	440	4.5 × 10⁻⁴	1.3	
	255	2.3 × 10 ⁻³	350	1.1 × 10⁻³	2.1	
PPDT2FBT	700	2.6 × 10 ⁻³	730	1.6 × 10⁻³	1.6	
	1020	4.0 × 10 ⁻³	1110	1.8 × 10 ⁻³	2.2	

Table S6 Electron and hole mobilities of electron- and hole-only devices based on polymer: $PC_{70}BM$ films measured using a space-charge-limited current method.

^a Hole mobility, ^b Electron mobility.

Films	Polymers	Additive (DPE)	Lamellar spacing		π-π stack	
			<i>q</i> z (Å⁻¹)	<i>d</i> - spacing (Å)	q _z (Å⁻¹)	<i>d-</i> spacing (Å)
	DDNTRT	Νο	0.3324	18.9	-	-
		Yes	0.3312	19.0	-	-
Pristine polymer	PPDTFBT	Νο	0.3035	20.7	1.6614	3.78
		Yes	0.3036	20.7	1.6706	3.76
	PPDT2FBT	Νο	0.3036	20.7	1.6873	3.72
		Yes	0.3000	20.9	1.6901	3.72
	DDDTDT	No	0.3297	19.1	-	-
	PPDIBI	Yes	0.3332	18.9	-	-
Polymer:PC ₇₀ BM	DDDTEDT	No	0.3182	19.7	1.6925	3.71
blend	PPDIFRI	Yes	0.3178	19.8	1.7590	3.57
	DDDT2EPT	No	0.3164	19.9	1.7089	3.68
	PPUIZFBI	Yes	0.3133	20.1	1.7514	3.59

Crystallographic parameters

Table S7 Packing parameters derived from GIWAXS measurements.

Fig. S12 In-plane (a and c) and out-of-plane (b and d) GIWAXS data for pristine polymers (a and b) and polymer: $PC_{70}BM$ (c and d) films with and without DPE.

References

- 1 J. E. Carlé, J. W. Andreasen, M. Jørgensen and F. C. Krebs, *Sol. Energy Mater. Sol. Cells.* 2010, **94**, 774-780.
- L. Biniek, C. L. Chochos, N. Leclerc, O. Boyron, S. Fall, P. Lévèque and T. Heiser, *J. Polym. Sci. Part A: Polym. Chem.* 2012, **50**, 1861-1868.
- 3 J.-E. Jheng, Y.-Y. Lai, J.-S. Wu, Y. H. Chao, C.-L. Wang and C.-S. Hsu, *Adv. Mater.* 2013, **25**, 2445-2451.
- 4 S. Miyanishi, K. Tajima and K. Hashimoto, *Macromolecules* 2009, 42,1610-1618.
- 5 G. Griffini, J. D. Douglas, C. Piliego, T. W. Holcombe, S. Turri, M. J. Fréchet and J. L. Mynar, *Adv. Mater.* 2011, **14**, 1660-1664.
- 6 X. Meng, W. Zhang, Z. Tan, Y. Li, Y. Ma, T. Wang, L. Jiang, C. Shu and C. Wang, *Adv. Funct. Mater.* 2012, **22**, 2187-2193.
- 7 H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, *Nature Photon*. 2009, **3**, 649-653.
- 8 Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. li, C. Ray and L. Yu, *Adv. Mater.* 2010, **22**, E135-E138.
- 9 L. Huo, S. Zhang, X. Gou, F. Xu, Y. Li and J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697-9702.
- 10 H. J. Son, L. Lu, W. Chen, T. Xu, T. Zheng, B. Carsten, J. Strzalka, S. B. Darling, L. X. Chen and L. Yu, *Adv. Mater.* 2013, 25, 838-843.
- Y. Huang, X. Guo, F. Liu, L. Hou, Y. Chen, T. P. Russell, C. C. Han, Y. Li and J. Hou, *Adv. Mater.* 2012, 24, 3383-3389.
- H.-C. Chen, Y.-H. Chen, C.-C. Liu, Y.-C. Chien, S.-W. Chou and P.-T. Chou, *Chem. Mater.* 2012, 24, 4766-4772.
- 13 C. Cabanetos, A. E. Labban, J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. J. Fréchet, M. D. McGehee and P. M. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656-4659.