Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

# Supporting Information for

# 5 Carbon Nanohorn-based electrolyte for Dye-Sensitized Solar Cells

By Fabian Lodermeyer, Rubén D. Costa, Rubén Casillas, Florian T. U. Kohler, Peter Wasserscheid, Maurizio Prato, and Dirk M. Guldi

|    | Materials                                                                       | 1 |
|----|---------------------------------------------------------------------------------|---|
| 10 | Dye-sensitized solar cell fabrication and characterization                      | 1 |
|    | Transmission electron microscopy                                                | 2 |
|    | Raman experiments                                                               | 3 |
|    | Thermogravimetric analysis                                                      | 3 |
|    | Differential scanning calorimetry measurements                                  | 4 |
| 15 | Scanning Electronic Microscopy                                                  | 4 |
|    | Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) | 5 |
|    | Temperature dependence of ssDSSCs                                               | 7 |
|    | Bode phase of ssDSSCs                                                           | 8 |
|    | Short-circuit density versus light intensity                                    | 8 |
| 20 | Time dependent evolution of the D/G ratio of E4                                 | 9 |

# Materials

- All chemicals were purchased from chemical suppliers and used without further purification. 25 TiCl<sub>4</sub> (0.09 M in HCl), guanidinium thiocyanate, 4-*tert*-butylpyridine, 1-ethyl-3methylimidazolium iodide, 1-butyl-3-methylimidazolium tetrafluoroborate, cisdiisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) bis(tetrabutylammonium), and H<sub>2</sub>Cl<sub>6</sub>Pt x H<sub>2</sub>O were purchased from Sigma-Aldrich. TiO<sub>2</sub> paste (Ti-Nanoxide T/SP) and the sealing foil (Meltonix 1170-25) were purchased from Solaronix.
- 30 SWCNHs were produced by Carbonium s.r.l., Padova (Italy) by direct graphite evaporation in Ar flow, according to a patented method and used without purification.<sup>[1]</sup>

# Dye-sensitized solar cell fabrication and characterization

FTO substrates were sonicated for 15 min with a detergent solution, washed with deionized water, and again sonicated in isopropyl alcohol for 15 min. FTOs were immersed into a 40 mM

- 35 aqueous TiCl<sub>4</sub> solution at 70 °C for 30 min and washed with water and ethanol. Treated substrates were sintered at 450 °C for 30 min. The transparent nanocrystalline TiO<sub>2</sub> layer were prepared on FTO glass plates by using a doctor blade technique. The TiO<sub>2</sub> anodes were gradually heated under air flow at 450 °C for 30 min. For alpha-step thickness measurements, we utilized a profilometer Dektak XT from Bruker. The average thickness of the films was
- 40 7 μm. Solaronix claims a pore size between 15 20 nm when applying the standard Ti-Nanoxide T/SP paste. The electrodes were immersed at around 80 °C in a solution of N719 (0.5 mM in ACN:EtOH 1:1 v/v) over night and rinsed with EtOH.

For preparation of the counter-electrodes two holes (0.1 mm) were drilled into FTOs *via* sandblasting prior to the cleaning procedure (*vide supra*). FTOs were coated with a thin film of

- 45 chloroplatinic solution (4.88 mM) in isopropyl alcohol. Thereby, always the same amount of chloroplatinic solution (26  $\mu$ L) was used to assure the same coverage of the FTO. Then, the slides were annealed to 390 °C for 15 min. For every measurement counter-electrodes were freshly prepared to assure reproducible results.
- The photoanodes and the counter-electrodes were assembled into a sealed sandwich-type cell by heating at 130 °C with a controlled pressure using a hot-melt ionomer film (Surlyn). The electrolytes were introduced *via* capillary forces. Finally, the two holes were sealed using an additional Surlyn and a cover glass. For every experiment three cells were assembled to prove good reproducibility.
- 55 The photocurrent measurements and electrochemical impedance spectroscopy (EIS) were performed using a 150 W lamp (Xenon lamp, calibrated to 1000 W m<sup>-2</sup> under AM 1.5 conditions with a Si-Reference cell (Oriel SRC-1000-TC-K-KG5-N). Current-voltage measurements were measured by using a potentiostat/galvanostat (PGSTAT30N, Autolab equipped with a frequency response analyzer module FRA) in the range of -0.8 to 0.2 V. EIS measurements
- 60 for ssDSSCs were performed at the respective open-circuit voltage of the different devices at 1000 W m<sup>-2</sup> and AM 1.5 conditions. The AC signal amplitude was set at 10 mV, modulated in a frequency range from 0.1 to 100000 Hz. The Nova ver. 1.10 software was used to obtain the parameters from the equivalent circuit.
- The linear sweep voltammetry of the electrolytes in the FTO-Pt/electrolyte/Pt-FTO configuration measurements and were performed with an Autolab potentiostat/galvanostat (PGSTAT30, Autolab equipped with a frequency response analyzer module FRA) in the range of 0.8 to 0.2 V. Here, EIS was performed without applying a potential. The AC signal amplitude was set at 10 mV, modulated in a frequency range from 0.1 to 100000 Hz.

# Transmission electron microscopy

70 Transmission electron microscopy (TEM) was performed with Zeiss TEM 912 Omega.



**Figure S1.** Transmission electron microscopy (TEM) image (left) and zoom in (right) of a drop casted dispersion of CNH in chlorobenzene onto a lacey carbon grid.

### 80 **Raman experiments**

Raman experiments were performed using Bruker RFS 100/3 with an excitation of 532 nm and a power of 50 mW.



Figure S2. Raman spectrum of pristine CNHs measured in solid state at 532 nm excitation.

# 85 Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed with a TGA Q500 TA Instruments at 10 °C/min under nitrogen.



**Figure S3.** Thermogravimetric analysis profile of pristine CNHs measured under nitrogen conditions.

#### Differential scanning calorimetry measurements

95 Differential scanning calorimetry (DSC) was measured on a Netzsch DSC 204 with a heating rate of 5 K min<sup>-1</sup> under ambient conditions.



**Figure S4.** DSC measurements of pure [EMIM]I (red) and mixtures of [EMIM]I:CNHs weight ratios of 5:1 (cyan) and 10:1 (orange).

#### 100

105

### **Scanning Electronic Microscopy**

Scanning Electronic Microscopy (SEM) images were performed with Zeiss Gemini 55 Ultra under vacuum (10<sup>-9</sup> mbar).



**Figure S5.** Upper part: SEM images of [EMIM]I:CNHs 1:1 wt% (left) and pure [EMIM]I (right). The inset displays the intercalation of CNH aggregates into the [EMIM]I matrix. Lower part: Lower magnification of the aforementioned electrolytes.

110 Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS)



Figure S6: Left: LSV measurements of pure [EMIM]I (red) and mixtures of [EMIM]I:CNHs
weight ratios of 10:1 (orange), 5:1 (cyan), and 1:1 (green). Right: LSV measurements of pure
EMII (E1, red), [EMIM]I:CNHs 1:1 wt% (E2, green), [EMIM]I:[BMIM][BF4]:TBP:GuSCN 1:0.25:0.83:0.17 wt% (E3, blue), and [EMIM]I:CNHs:[BMIM][BF4]:TBP:GuSCN 1:1:0.25:0.83:0.17 wt% (E4, black).



120



**Figure S7.** Upper part: The equivalent circuit is shown. Left bottom part: EIS spectra of pure [EMIM]I (red) and mixtures of [EMIM]I:CNHs weight ratios of 10:1 (orange), 5:1 (cyan), and 1:1 (green). Right bottom part: EIS spectra of pure [EMIM]I (**E1**, red), [EMIM]I:CNHs 1:1 wt% (**E2**, green), [EMIM]I:[BMIM][BF4]:TBP:GuSCN 1:0.25:0.83:0.17 wt% (**E3**, blue), and [EMIM]I:CNHs:[BMIM][BF4]:TBP:GuSCN 1:1:0.25:0.83:0.17 wt% (**E4**, black).

| Electrolyte               | R <sub>Pt</sub> | R <sub>diff</sub> | D <sub>diff</sub>               |
|---------------------------|-----------------|-------------------|---------------------------------|
|                           | $[\Omega]$      | $[\Omega]$        | $[x \ 10^{-10} \ m^2 \ s^{-1}]$ |
| [EMIM]I ( <b>E1</b> )     | 190.47          | 2676.10           | 0.08                            |
| [EMIM]I:CNHs 10:1 wt%     | 44.84           | 477.65            | 0.42                            |
| [EMIM]I:CNHs 5:1 wt%      | 28.13           | 205.63            | 0.98                            |
| [EMIM]I:CNHs 1:1 wt% (E2) | 7.38            | 35.86             | 5.63                            |
| E3                        | 167.33          | 781.04            | 0.26                            |
| <b>E4</b>                 | 41.21           | 31.39             | 6.44                            |
|                           |                 |                   |                                 |

**Table S1:** Charge transport resistance at the Pt counter electrode ( $R_{Pt}$ ), Warburg diffusion ( $R_{diff}$ ), and diffusion coefficient ( $D_{diff}$ ) of electrolytes obtained from EIS analysis at room temperature.

**Table S2.** ssDSSC parameters measured at 70 °C for different amounts of CNHs in [EMIM]I obtained under AM1.5 conditions and 1 sun illumination.

| [EMIM]I:CNH           | $J_{SC}$              | Voc  | FF   | η    | Relative improvement |
|-----------------------|-----------------------|------|------|------|----------------------|
| wt%                   | [mA/cm <sup>2</sup> ] | [V]  | 11   | [%]  | in η                 |
| [EMIM]I ( <b>E1</b> ) | 1.27                  | 0.47 | 0.71 | 0.42 | 1.00                 |
| 10:1                  | 1.46                  | 0.51 | 0.72 | 0.54 | 1.29                 |
| 5:1                   | 2.53                  | 0.45 | 0.59 | 0.68 | 1.62                 |
| 1:1 ( <b>E2</b> )     | 8.29                  | 0.45 | 0.56 | 2.09 | 4.98                 |

#### **Temperature dependence of ssDSSCs**



**Figure S8.** Solar cell parameters of ssDSSCs with different amounts of CNHs inside the [EMIM]I electrolyte. Legend: pure [EMIM]I (red) and mixtures of [EMIM]I:CNHs weight ratios of 10:1 (orange), 5:1 (cyan), 1:1 (green).



**Figure S9.** ssDSSC performance with several heating and cooling processes of the solar cell. The electrolyte composition was [EMIM]I:CNHs 1:1 wt%.



Figure S10. Efficiency of ssDSSCs with E2 at different temperatures and measured at room temperature for different times after heating-cooling cycles.



Figure S11. Bode phase of ssDSSCs with E1 (red), E2 (green), E3 (blue), E4 (black).

Short-circuit density versus light intensity



165

Figure S12. J<sub>sc</sub> versus illumination conditions at AM 1.5 conditions of devices with E4.

170

# Time dependent evolution of the D/G ratio of E4



Figure S13. D/G ratio from Raman experiments of CNHs present in different ssDSSCs with E4 over the time. The excitation wavelength was  $\lambda = 532$  nm.



180

**Figure S14.** Exemplary Raman experiments of CNHs present in **E4** normalized to the G band after 0 (black) and 3 (red) days.

[1] M. Schiavon, US Pat. 7,125,525 2006, 2.