Electronic Supplementary Information (ESI)

Effect of π -Conjugated Bridges of TPD-based Medium Bandgap Conjugated Copolymers for Efficient Tandem Organic Photovoltaic Cells

Ji-Hoon Kim,^a Jong Baek Park,^a Fei Xu,^a Dongwook Kim,^b Jeonghun Kwak,^c

Andrew C. Grimsdale,^d Do-Hoon Hwang^a*

^aDepartment of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea

^bDepartment of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu,

Suwonsi, Gyeonggi 443-760, Republic of Korea.

^cDepartment of Electronic Engineering, Dong-A University, Busan 604-714,

Republic of Korea

^dSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Table of the Contents

1. Sy	nthetic route and ch	nemical structu	ures of tt-TPD and	nd TPD monome	rs	S3
2.	TGA	and	DSC	curves	of	the
polyr	ners			S4		
3. Ke	y dihedral angle of	the four differ	rent polymers			S5
4. OF	V Device Optimiz	ation Screenin	g			S6~S9
5. Th	e mobilities extract	ed from SCLC	C are summarize	d		S10
6. 1D	out-of-plane X-ray	y profiles extra	acted from the 2	D-GIXD patterns		S11
7. Pro	oton NMR spectrum	n of monomer	s			S12~S14

Scheme S1 Synthetic scheme for tt-TPD and TPD monomers : (i) AlCl₃, heptanoyl chloride, methylene chloride, 4 h, room temperature, Ar. (ii) K₂CO₃, ethyl mercaptoacetate, 18-crown-ether, 60 °C, 12h. (iii) NaOH, H₂O, THF, HCl, 80°C, 12h. (iv) Cu, quinoline, 240 °C, 3h. (v) *n*-BuLi, trimethyltin chloride, -78°C, 2h. (vi) Compound 5, Pd(pph₃)₂Cl₂, DMF, 150°C, 12h. (vii) NBS, DMF, 8h. (viii) 2-Tributylstannylthiophene, Pd(pph₃)₂Cl₂, DMF, 150°C, 12h. (ix) NBS, DMF, 8h.

Figure S1. TGA and DSC thermograms of the polymers.

Table S1. Dihedral angles of the model compounds calculated by density functional theory (DFT).

47.19

13.31

43.20

45.39

1.89

43.07

40.99

21.73

35.76

PBDT-ttTPD

PBDTT-TPD

PBDTT-ttTPD

Figure S2. (a) J-V curves for ITO/ZnO NPs/PBDTT-ttTPD:PC₇₁BM (processed with 3 vol% DIO)/MoO₃/Ag configuration with different weight ratios. (b) EQE curves of the OPVs based on PBDTT-ttTPD:PC₇₁BM (processed with 3 vol% DIO) with different weight ratios.

Table S2. Comparison of the photovoltaic properties of the OPVs based on PBDTT-ttTPD: $PC_{71}BM$ (processed with 3 vol% DIO) with different weight ratios, measured under an illumination of AM 1.5 G, 100 mW cm⁻².

Polymer	Weight	V _{OC}	$J_{ m SC}$	FF	PCE
	ratio [w/w]	[V]	[mA/cm ²]	[%]	[%]
	1.0:0.8	0.84	10.72	70	6.29
PBDTT-ttTPD: PC ₇₁ BM with DIO	1.0:1.0	0.84	11.05	73	6.81
	1.0:1.5	0.82	10.41	75	6.43

The device architecture is ITO/ZnO NPs/polymer:PC₇₁BM/MoO₃/Ag.

Figure S3. (a) J-V curves for ITO/ZnO NPs/PBDTT-ttTPD:PC₇₁BM (1:1) (processed with 3 vol% DIO)/MoO₃/Ag configuration with different solvents. (b) EQE spectra of the OPVs based on PBDTT-ttTPD:PC₇₁BM (1:1) with different solvents.

Table S3. Comparison of the photovoltaic properties of the OPVs based on PBDTT-ttTPD:PC₇₁BM (1:1) with different solvents under an illumination of AM 1.5 G, 100 mW cm⁻².

Polymer	Solvent	Weight	V _{OC}	$J_{ m SC}$	FF	PCE
	With DIO	ratio	[V]	[mA/cm ²]	[%]	[%]
		[w/w]				
	CB	1.0:1.0	0.84	10.91	70	6.41
PBDTT-ttTPD : PC ₇₁ BM	CF	1.0:1.0	0.82	11.28	72	6.70
	ODCB	1.0:1.0	0.82	11.04	74	6.65

The device architecture is ITO/ZnO NPs/polymer:PC71BM/MoO3/Ag.

Figure S4. *J*–*V* curves for ITO/ZnO NPs/PBDTT-ttTPD:PC₇₁BM (1:1) (CF solvent processed with 3 vol% DIO)/MoO₃/Ag configuration with different active layer thickness.

Table S4. Comparison of the photovoltaic properties of the OPVs based on PBDTT-ttTPD:PC₇₁BM (1:1) with different active layer thicknesses under an illumination of AM 1.5 G, 100 mW cm⁻².

11	PCE
[%]	[%]
66	5.93
69	6.22
71	6.41
73	6.81
72	6.36
	[%] 66 69 71 73 72

The device architecture is ITO/ZnO NPs/polymer:PC71BM/MoO3/Ag.

Figure S5. Photovoltaic parameters of the PBDTT-ttTPD: $PC_{71}BM$ OPVs under AM 1.5 G solar illumination: (a) Open-circuit voltage, (b) short-circuit current density, (c) fill factor, and (d) power conversion efficiency as a function of active layer thickness.

Polymer	Thickness	$\mu_h{}^a$	Blend system	Thickness	$\mu_h{}^a$
	(nm)	$(cm^2V^{-1}s^{-1})$	(1:1, w/w)	(nm)	$(cm^2V^{-1}s^{-1})$
PBDT-TPD	90	1.34 x 10 ⁻⁵	PBDT-TPD	90	4.73 x 10 ⁻⁶
			: PC ₇₁ BM		
PBDT-ttTPD	90	2.41 x 10 ⁻⁴	PBDT-ttTPD	90	2.53 x 10 ⁻⁵
			: PC ₇₁ BM		
PBDTT-TPD	90	3.90 x 10 ⁻⁵	PBDTT-TPD	90	6.20 x 10 ⁻⁶
			: PC ₇₁ BM		
PBDTT-ttTPD	90	7.20 x 10 ⁻⁴	PBDTT-ttTPD	90	3.08 x 10 ⁻⁵
			: PC ₇₁ BM		

Table S5. Calculated hole mobilities of pure polymer and polymer:PC₇₁BM system under optimized conditions as determined by SCLC.

^aHole-only devices with ITO/PEDOT:PSS/pure polymer or polymer:PC₇₁BM (1:1, w/w)/MoO₃/Au structure.

Figure S6. 1D out-of-plane X-ray profiles extracted from the 2D-GIXD patterns: (left) pure (a) PBDT-TPD, (b) PBDT-ttTPD, (c) PBDTT-TPD, and (d) PBDTT-ttTPD and (right) polymer:PC₇₁BM (1:1 w/w) blend films: (a) PBDT-TPD, (b) PBDT-ttTPD, (c) PBDTT-TPD, and (d) PBDTT-ttTPD.

Figure S7. ¹H NMR spectrum of 1,3-dibromo-5-(2-hexyldecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione.

Figure S8. ¹H NMR spectrum of compound 7.

Figure S9. ¹H NMR spectrum of TPD.

Figure S10. ¹H NMR spectrum of compound 5.

Figure S11. ¹H NMR spectrum of compound 6.

Figure S12. ¹H NMR spectrum of tt-TPD.