Electronic Supplementary information (ESI)

Highly Efficient and Bending Durable Perovskite Solar Cells: Toward Wearable Power Source

Byeong Jo Kim^{a†}, Dong Hoe Kim^{b†}, Yoo-Yong Lee^b, Hee-Won Shin^c, Gill Sang Han^a, Jung Sug Hong^b, Khalid Mahmood^a, Tae Kyu Ahn^c, Young-Chang Joo^b, Kug Sun Hong^b, Nam-Gyu Park^{c,d}, Sangwook Lee^{*e}, and Hyun Suk Jung^{*a}

^aSchool of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea.

^cDepartment of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea.

^dSchool of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

^eDepartment of Materials Science and Engineering, University of California at Berkeley, CA 94720, USA.

Fig. S1 X-ray diffraction (XRD) patterns of the materials. **(a)** Glazing incidence XRD patterns of Lt-ALD-TiO_x layer (100 nm) on glass substrate with the incident angle of 1.0°. **(b)** Powder XRD patterns of the CH₃NH₃PbI_{3-x}Cl_x layers on the different TiO_x layers.

Fig. S2 Histograms of the parameters of the flexible solar cells employing Lt-ALD-TiO_x ultrathin layer. 100 devices were tested for the statistics. (a) Power conversion efficiency PCE, (b) short-circuit current density J_{sc} , (c) open-circuit voltage V_{oc} , and (d) fill factor *FF*.

Fig. S3 Representative *J-V* curves of the perovskite solar cell (PEN/ITO/Lt-ALD-TiO_x/CH₃NH₃PbI_(3-x)Cl_x/spiro-MeOTAD/Ag) measured with the scan directions of forward (black) and reverse (red) with the scanning rate of 10 mV/s, under AM 1.5 G illumination. The green curve shows the average of two *J-V* curves. The inset tables summarize the parameters. The inset plot shows the static PCE, as a function of time, obtained with applying the maximum power output potential (i.e. 0.72 V, here), under AM 1.5 G illumination.

Fig. S4 FT-IR spectra (transmission mode) of Lt-ALD-, Et-, and Bt-TiO_x compact electroncollection layers prepared on Si wafer. The spectra were measured with Ge window.

Fig. S5 XPS spectra of the Lt-ALD-, Et-, and Bt-TiO_x compact electron-collection layers. (a) Ti $2p_{3/2}$ and (b) O 1s of Lt-ALD-, Et-, and Bt-TiO_x compact electron-collection layers. The XP spectra were acquired using monochromatic Al–K α radiation (100 W), and the core levels of O 1s and Ti $2p_{3/2}$ were calibrated with respect to the C 1s level at 284.5 eV.

Fig. S6 Normalized device parameters of flexible perovskite solar cells as a function of bending cycles with diverse radii of 400, 10, and 4 mm (R_{400} , R_{10} , and R_4 , respectively). (a) Normalized J_{sc} , (b) Normalized V_{oc} and (c) Normalized *FF*.

Fig. S7 Schematic images for in situ measurement of resistance and prepared multilayered structures. (a) Experimental scheme for in situ measurement of relative resistance change during the compressive bending cycle. (b), (c) and (d) Schematic of the designed multilayered structure: PEN/ITO/Ag, $PEN/ITO/TiO_x/perovskite/spiro-MeOTAD/Ag$, and $PEN/TiO_x/perovskite/spiro-MeOTAD/Ag$, respectively.

TiO _x	$J_{\rm sc}$ (mA/cm ²)	V _{oc} (V)	FF	PCE (%)
Et-TiO _x	15.0	0.829	0.342	4.26
Bt-TiO _x	5.96	0.855	0.236	1.20
Lt-ALD-TiO _x	18.4	0.890	0.576	9.43

Table S1. Device characteristics of solar cells fabricated with various TiO_x electron collection layers.

	<i>A</i> ₁ (%)	<i>t</i> ₁ (ns)	A2(%)	<i>t</i> ₂ (ns)	A3(%)	<i>t</i> ₃ (ns)	□ ave,int (ns)
Et-TiO _x	9.27	29.4	25.4	139	65.3	418	383
Bt-TiO _x	9.26	27.9	33.5	143	57.3	488	435
Lt-ALD-TiO _x	7.68	43.8	16.8	121	75.5	561	537

Table S2. Summary of the time-resolved photoluminescence lifetime parameters of $PEN/ITO/TiO_x/CH_3NH_3PbI_{(3-x)}Cl_x$ in Figure 2d (the samples were exposed to pulsed light for more than 1 hour to guarantee stable emission).

 $\overline{A_i}$ and t_i are amplitude ratio and lifetime of each component, respectively. Intensity weighted average lifetime was calculated by $\tau_{ave.int} = \frac{\sum_{i}^{i} A_i \tau_i^2}{\sum_{i}^{i} A_i \tau_i}$.