Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A Quinone Based Oligomeric Lithium Salt for Superior Li–Organic Battery

Zhiping Song^a, Yumin Qian^a, Xizheng Liu^a, Tao Zhang^a, Yanbei Zhu^c, Haijun Yu^a, Minoru Otani^{bd}, Haoshen Zhou*ae

^aEnergy Technology Research Institute (ETRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan. Email: hs.zhou@aist.go.jp

^bNanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

^cNational Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

^dElements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

^eNational Laboratory of Solid State Microstructures & Department of Energy Science and Engineering, Nanjing University, Nanjing 210093, China

Purification of Li₂PDHBQS

There are two approaches to purify Li₂PDHBQS. The first one is much easier by using ethanol as solvent. In a typical process, as-prepared Li₂PDHBQS (0.40 g) was completely dissolved in 40 mL ethanol by adding 5 M HCl solution (as less as possible). 5 M LiOH solution was added into the clear solution drop by drop until precipitate generated, meanwhile the pH value of the solution indicated by a test paper turned to approx. 7. The mixture was centrifuged and washed with ethanol until the solution is colorless. The product was dried at 80 °C in air, obtaining a solid with deeper color than the crude product. A typical yield of this process is 88%.

The second approach of purification contains two separated steps, involving poly(2,5-dihydroxy-*p*-benzoquinonyl sulfide) (PDHBQS) as an intermediate product. In a typical process, as-prepared Li₂PDHBQS (0.50 g) was added into 20 mL 5 M HCl solution and the mixture was stirred at room temperature for 2 days. The mixture was then centrifuged and washed with 5 M HCl solution for twice. After drying at 80 °C in air, we can obtain PDHBQS as product with a dark brown color and a yield of 54%. In order to retrieve Li₂PDHBQS (0.20 g) was added into 20 mL 5 M LiOH solution and the mixture was stirred at room temperature for 2 days. The mixture was then centrifuged and washed with 5 M LiOH solution and the mixture was stirred at room temperature for 2 days. The mixture was then centrifuged and washed with ethanol until the pH value of the solution indicated by a test paper turned to approx. 7. The product was dried at 80 °C in air, obtaining a coral solid with yield closed to 100%.

As a lithium salt, Li₂PDHBQS is soluble in water (solubility is 2–3 mg mL⁻¹) but absolutely insoluble in ethanol. After stirring in 5 M HCl solution for 2 days, most enolate anions were protonated into hydroxyls, producing an oligomer called PDHBQS. During this process, NMP and low molecular weight oligomers were washed off. In contrast to Li₂PDHBQS, PDHBQS is soluble in ethanol, slightly soluble in water and absolutely insoluble in 5 M HCl solution. Thus in order to retrieve Li₂PDHBQS, PDHBQS can be either stirred in 5 M LiOH solution for 2 days or dissolved in ethanol and precipitated by adding LiOH.

Synthesis and characterization of Li₂CL

Dilithium chloranilate (Li₂CL) was synthesized by a simple acid–base reaction similar to the literature²⁷. In a typical process, CLA (0.418 g, 0.002 mol) and LiOH•H₂O (0.168 g, 0.004 mol) were dissolved in 20 mL H₂O. After evaporating excess H₂O, the product was dried at 230 °C under vacuum to stoichiometrically get anhydrous Li₂CL. However, the anhydrous Li₂CL strongly tend to absorb moisture when stored in air atmosphere, and the stable phase is usually Li₂C₆O₄Cl₂•H₂O with a brown color, which can be confirmed by different characterization methods including FTIR, EA and XRD.

 Li_2CL ($Li_2C_6O_4Cl_2\bullet H_2O$). ¹H NMR (500MHz, D₂O): δ =4.63 ppm (H₂O). ¹³C NMR (500MHz, D₂O): δ =106.6 ppm (C—Cl), δ =174.3 ppm (conjugated C=O and C—O⁻). FTIR (KBr pellets): v=3434, 1630, 1549, 1520, 1389, 1024, 848, 746, 599, 581, 499 cm⁻¹. HRMS calculated for [Li₃C₆O₄Cl₂•H₂O]⁺: m/z=244.976; found: m/z=244.938. EA calculated for Li₂C₆O₄Cl₂•H₂O: C 30.17%, H 0.84%, O 33.49%, Cl 29.68%; found: C 30.21%, H 0.95%, O 30.62 %, Cl 27.41%.

Elemental analysis of Li₂PDHBQS

The measured C, H, O, S, N, Cl and Li content in Li₂PDHBQS is respectively 34.5%, 2.5%, 41.4%, 9.3%, 0.16%, 1.7% and 6.4% (total value is 96.0%). The residual Cl content is greatly reduced from theoretical value of 33.9% in CLA, indicating almost all Cl atoms are substituted. Unfortunately, the measured S content in Li₂PDHBQS is too low and thus obtained C/S molar ratio is approx. 11:1, far away from the theoretical value of 6:1. The contradiction between low residual Cl content and low substituting S content puzzled us for a long time. Finally we found the high Li content in Li₂PDHBQS brought huge error in the elemental analysis of C, S and O through a combustion method, due to the formation of Li₂SO₄ and/or Li₂CO₃ in combustion process.

Table S1 Characteristic IR band assignments of the four samples. All characteristic peaks of CLA are well assigned according to the literature.³⁹ The suffix follow the wavenumber (cm⁻¹) means the strength and shape of the peak: s, strong; m, medium; w, weak; vw, very weak; br, broad.

Vibration Type	CLA	Li ₂ CL	PDHBQS	Li ₂ PDHBQS
O—H of H ₂ O, stretching		3434s,br	3443s,br	3412m,br
O—H, stretching	3237s			
O—H of H ₂ O, bending		1630w		1649w
C=O, stretching	1665s	1549s	1650s	
C=C, stretching	1633s	1520s 1609s		1527s
C—O, stretching	1371s	1389w	1361m	1390w
O—H, bending	1286–1271s,br		1292–1235m,br	1281w, 1230w
C—C, stretching	984s		974w	
C—Cl, stretching	856m	848w		
C=O, wagging	753m	746w		
O—H, torsion	693m			
C—Cl, wagging	572m	581w		
Ar—S, stretching				1120vw

Table S2 Energy level data calculated by DFT method with B3LYP exchange-correlation functional.

Molecule	$C_6H_4O_4$	LiC ₆ H ₄ O ₄	$Li_2C_6H_4O_4$	$Li_2C_6H_2O_4$	Li ₃ C ₆ H ₂ O ₄	$Li_4C_6H_2O_4$
LUMO (eV)	-3.4368	-2.0517	-1.4395	-2.2749	-1.6898	-1.0095
HOMO (eV)	-7.0614	-4.1144	-3.0477	-5.3797	-3.5484	-2.5198

Fig. S1 XRD patterns of CLA, Li₂CL and Li₂PDHBQS. Both CLA and Li₂CL (Li₂C₆O₄Cl₂•H₂O) exist in crystalline phase but Li₂PDHBQS exists in amorphous phase although it is also a lithium salt.

Fig. S2 Long-term cycling profiles of Li₂PDHBQS electrode without absorbed water. $(1.5-3.0 \text{ V}, 500 \text{ mA g}^{-1})$. The max reversible capacity is 248 mAh g⁻¹ and it remains 180 mAh g⁻¹ after 500 cycles, indicating a much poorer cycling stability than that of Li₂PDHBQS with absorbed water (Figure 4c).

Fig. S3 SEM image of Li₂PDHBQS electrode film (Li₂PDHBQS: Ketjenblack carbon: PTFE=6:3:1). When grinding the mixture, water was added to promote the intimate contact between Li₂PDHBQS and Ketjenblack carbon at nanoscale level benefiting from the dissolution of Li₂PDHBQS in water.

Fig. S4 Ex-situ FTIR spectra of Li₂PDHBQS electrodes. It is obvious that the characteristic peak of C=O and C=C stretching vibration at 1515 cm⁻¹ greatly reduces after discharging to 1.5 V.

Fig. S5 CV curves of $Li_2PDHBQS$ at different scan rates (0.1, 0.2, 0.5 and 1.0 mV s⁻¹). The linear relation of peak (oxidation peak at 2.0–2.1 V) current vs. scan rate indicates it is a surface reaction.

Fig. S6 EIS profiles of Li₂PDHBQS electrode (a) with H₂O or (b) without H₂O at different status: before cycling and after 1st, 2nd, 5th and 20th charging process. The R_{CT} (charge transfer resistance, approximate to the diameter of the semicircle) of electrode without absorbed water greatly increased, either before cycling or after several cycles. The R_{CT} obviously reduces after 1st cycle due to the building of Li-ion transport channels and then gradually increases in the following cycles due to polarization of the electrode.