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1 Dynamics of particle motion

The motion of finite-sized particles in fluids is a common phenomenon encountered in nature 
and engineering. It is well known that the dynamics of finite-sized particles can differ 
remarkably from the infinitesimal particle dynamics. When the carrier flow is turbulent, a 
striking feature is the tendency of heavy particles to inhomogeneously distribute in space, 
forming spatial clusters, that is called preferential concentration.25 The phenomenon of 
preferential concentration of heavy particles in turbulent flows has been extensively 
researched theoretically and experimentally, and ascribed to the mechanism of heavy 
particles being centrifuged out of turbulent vortices.29 

The recent studies concluded that in high Re regime, preferential concentration of heavy 
particles is in the regions of high strain rate and low vorticity.30-32 However, most of the 
studies have been restricted to turbulent flows and not many studies have been conducted to 
study the dynamics of almost neutrally buoyant particles (ρp   ρf). In particular, the ≈

dynamics of neutrally buoyant particles in the laminar (chaotic) flow is much less understood. 

The pioneering theoretical work conducted by Babiano et al. (2000)16 showed that a large 
finite-sized particle will preferentially move into a region with a negative value of Okubo-
Weiss number, Q, which is defined as:

                                                                                                                            (4)
𝑄 =

(𝑠2 - 𝑤2)
4

where s is the strain rate, s2 is the sum of the squared normal and shear components of the 
strain reate tensor, w is the vorticity, and Q gives an indication on the flow that is either 
dominated by vorticity, or by strain rate.33 It is obvious that when Q >0, the flow is strain 
dominated, while when Q < 0, it is vorticity dominated. The prediction conducted by Babiano 
et al. (2000) thus showed that the finite-sized particles tend to scatter from the strain-
dominated region(s) and settle in the vorticity-dominated region(s).16 However, Sapsis and 
Haller made further prediction and suggested that the tendency of particle motion is only 
dependent only on strain rate, not on vorticity.18 The only quantitative experimental study on 
dynamics of inertial particle, as far as we are aware, is the work conducted by Ouellette et al. 
(2008). The main conclusions from their studies are that large inertial particles tend to deviate 
from the underlying flow field and the effects of small amount of inertia are still vital in a 
long-time statistical data.14  

In general, no universal agreement has been made on the tendency of inertial-particle motion 
in laminar fluid flow. Our work firstly provides the experimental evidence that large inertial 
particles tend to concentrate, or cluster in the regions of low strain in stirred laminar flows 
(Fig. 10), just the opposite of what have been reported in turbulent flows where particles 
cluster in high strain regions.29,30  
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Figure 10 CFD prediction for velocity field and strain rate ( : 1/S) in the laminar mixing tank.  �̇�
In the strain-rate plot, red is the high-strain area; blue is the low-strain area. Re=120. Particles 
tend to scatter from the high strain regions and cluster in the regions of low strain in this case. 
(Cells number: 700,000, cell: hexahedron and pentahedron) 

Repellers and attractors exist in the dynamical systems, and they are caused by common 
features of natural or engineering flows. In a dynamical system, a point set in phase space 
attracting all surrounding phase trajectories from some regions is an attractor. An attractor 
could be stochastic or chaotic, depending on the associated flow behaviour of the system. In 
contrast to attractor, particle trajectories are repelled from the current phase, and the regions 
repelling the particles are called repellers. It should be noted that attractors and repellers are 
only present in the dissipative systems.13 

2 Passive particle motion

Flow in an unbaffled stirred tank is axisymmetric in a time-averaged sense, and it produces a 
dynamical system that is 2-dimensioinal and conserves phase space. Fig. 11 illustrates the 
skeleton of the laminar stirred flow which has KAM tubes above and below the impeller.  In 
our system, the six-evenly-spaced blades perturb the base flow periodically, resulting in 
chaotic flows due to the repeating formation of stretching and folding; as a consequence of 
this, the introduction of chaos is made to surround somewhat smaller KAM tubes. Recent 
studies show that the surface area of the KAM tubes admit no advective fluid flux across 
them; the dyed areas (decolourization results mentioned in Section 2) remained unchanged 
for scales of days, because only slow molecular diffusion occurs.8,9 



Figure  11 Fluid particle system for (laminar) stirred tank at low Re; two tori present above 
and below the impeller. Yellow area: KAM tubes (low strain area); the rest of the system: 
chaotic flow area (high strain area).

3 Inertial Particle motion 

The critical parameter describing the particle motion in fluid flow is the particle Reynolds 
number:

                                                                                                                    (5)
𝑅𝑒𝑝 =

|𝑉𝑝 - 𝑢|𝐿
𝜈

where Vp is the velocity of a rigid spherical particle, u is the velocity of ambient fluid, L is 
the characteristic length scale of the flow. For passive particle,  =0 as  vanishes; for 𝑅𝑒𝑝 |𝑉𝑝 - 𝑢|
small-enough inertial particles, <<1 and it is usually assumed that when particle 𝑅𝑒𝑝

concentration is low, particle motion does not affect the ambient u. 

Newton’s law for the particle motion in fluid flow is:

+                                                    (6)
                                             𝑚𝑝

𝑑𝑉𝑝

𝑑𝑡
= 𝐹𝐷 + 𝐹𝐻 + 𝐹𝐸 𝐹𝐼

where mp is the mass of the particle.  The terms, or forces on the right hand side of the 
equation are, respectively, the hydrodynamic drag force, the other hydrodynamic forces, 
external forces and internal forces generated by the rigid particle.    

Maxey and Riley31 considered the motion of a small spherical particle in an unsteady non-
uniform flow, and they proposed an equation based on the Newton’s law that is

                     (7)
                      𝜌𝑝
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+ (𝜌𝑝 - 𝜌𝑓)𝑔 -
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-

𝐷𝑢
𝐷𝑡

)

where g is the gradational acceleration (9.81 m/s2), ρp is particle density, ρf is the fluid density 
and a is the particle radius. This equation is known as Maxey-Riley equation. The forces (on 
the right hand side of the equation) are, respectively, the forces exerted by the undistributed 
flow on the particle, the buoyancy force, Stokes drag and the added-mass from part of the 



fluid. D / Dt in this equation represents the time derivative following the flow. The 
assumptions of the MR equation are that impacts of the Faxén corrections and Basset 
history force are negligible.13 

Inertial parameter σ is given by Eq. (1) in the main text. In the solid-particle systems we 
studied here, St << 1 because Ref is small in laminar flows, a/L << 1, and ρp / ρf .   gives ≈ 1 𝜎

the ratio of the particle relaxation time and the typical timescale of the flow. Note that the 
larger the inertia parameter, the more important the effect of inertia; as , =0, 𝜎→0 𝑅𝑒𝑝

indicating that  the particle move passively with the fluid.  We can substitute the inertia 
parameter into the Eq.(7):

                                                                                                  (9)
𝜎(𝑑𝑉𝑝

𝑑𝑡
-

𝐷𝑢
𝐷𝑡) = - (𝑉𝑝 - 𝑢)

This equation is valid in the following conditions:  buoyancy is completely neglected by 
setting g = 0,  the particle density is small, where the interaction among particles can be 
neglected,  Rep << 1 and particle motion does not affect the ambient fluid flow u. 

4 Clustering criteria

Particle inertia adds additional degree of freedom into the dynamical system, where the 2-
dimensional fluid dynamical system changes into 4-dimensional dynamical system, in which 
the inertial particle trajectories move. Fig. 12 schematically shows the phase space and 
representative orbits of the inertial dynamical system. The fluid coordinates are the plane that 
is  an attracting slice of the total particle-fluid system. The fluid plane is attracting, because of 
the hydrodynamic drag in laminar flows: a particle will always nearly move passively with 
the fluid motion until perturbed away. When perturbed, a particle can leave the fluid 
coordinates and move non-passively through the particle coordinates of the dynamical system. 
This simply means that when an inertia particles move non-passively, it requires four 
numbers, the particle location and its velocity, to describe its state. The boundaries of the 
KAM tubes (we termed separated flow regions here) are transport barriers in the fluid plane 
only, when particles leave the fluid plane and move through particle coordinate space, they 
can either reattract to any part of the fluid plane, either in the separated flow region (red orbit 
in Fig. 12), or outside of this region (blue orbit). Eventually all particles settle into the 
separated flow region.



Figure 12 Phase space of augmented dynamical system for particle motion. 2-dimensional 
attracting plane of the fluid coordinates is perspective view of Fig. 8. Vertical coordinate is 
particle Reynolds number. Particle trajectories are repelled from the fluid coordinates to move 
in the particle coordinates. Some particles (blue) reattract outside tubes and can be repelled 
again; other particles (red) reattract inside tubes and do not encounter repellors again. 

Next, we need to derive a criterion to identify the repelling regions (condition (1)) in 
our stirred tank system. Sapsis and Haller proved that the fluid plane of Eq. (9) is 
overall attracting, but also that some parts in the fluid plane can repel particle 
whenever 

                                             (10)                                                                       𝜎𝑚𝑖𝑛[𝑆 + 𝜇 - 1𝐼] < 0.

where S is the rate of strain tensor ( , I is the unit tensor and  𝑆 = 1/2[∇𝑢 + (∇𝑢)𝑇] 𝜎𝑚𝑖𝑛[ ∙ ]

denotes the minimum eigenvalue of the racketed tensor.18-20 As our flow is axisymmetric, the 
required eigenvalue can be determined from the characteristic equation of 2  2 martix in Eq. ×

(7) as  . From a general result of matrix algerbra 𝜎𝑚𝑖𝑛 = 𝜇 - 1 - ( - 𝑑𝑒𝑡⁡(𝑆))
1
2

S : S, where it is based on the fact that  , and the –det (𝑠) = (1/2)𝑡𝑟𝑎𝑐𝑒(𝑆2) = (1/2) 𝑡𝑟𝑎𝑐𝑒(𝑆) = 0

dyadic (double dot) product leads to the sum of the squared strain rates along the 
eigendirections of S. The invariant dyadic product of the rate of strain tensor is used as the 
definition of the total strain rate,35,36 and the total strain rate at a point can be defined as 

. In these considerations, the repelling (or scattering) criterion becomes Eq. ̇�̇� = (1/2)(𝑆 :𝑆)1/2

(2). 

As  contains a factor of Re, data for each particle plots along a diagonal line with a slope 𝜎

proportional to inerta.  The thick line in Fig. 13 is the equality of Eq. (3). To the right and 
above the line, the theory predicts clustering, which is confirmed by experiments. It should be 



noted that that Fig. 13 had no adjustable parameters, indicating that it is also applicable to 
other mixing systems. 

Figure 13 Instability boundary theory and data; open circles, no clustering; filled circles, 
clustering. Thick line is rearranged form of Eq. (3). 
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