Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Peanut Shell Hybrid Sodium Ion Capacitor with Extreme Energy - Power Rivals Lithium Ion Capacitors

Jia Ding^{a,b}, Huanlei Wang^{a,b}, Zhi Li^{a,b*}, Kai Cui^b, Dimitre Karpuzov^c, Xuehai Tan^{a,b},

Alireza Kohandehghan^{a,b}, David Mitlin^{a,b,d**}

^a Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G

2V4, Canada

^b National Institute for Nanotechnology (NINT), National Research Council of

Canada, Edmonton, Alberta T6G 2M9, Canada

^c University of Alberta, Alberta Centre for Surface Engineering and Science,

Edmonton, Canada

^d Chemical & Biomolecular Engineering, Clarkson University

8 Clarkson Ave., Potsdam, New York 13699, USA

* lizhicn@gmail.com, **david.mitlin2@gmail.com

Figure S1: SEM micrographs of (A) PSNC-3-850 and (B) PSNC-2-800, (C) PSOC, (D) the baseline commercial activated carbon (CAC).

Figure S2: SEM micrographs of cathode and anode carbons achieved when employing the entire peanut shell as a single precursor for either synthesis process. (A) cathode carbon. (B) anode carbon.

Figure S3: HAADF TEM micrographs and thickness profiles (insert) of (A) PSNC-3-850 and (B) PSNC-2-800, measured from low-loss EELS along the white arrows. HRTEM micrographs of (C) PSNC-3-850, and (D) PSNC-2-800.

Figure S4: HRTEM micrograph of PSOC.

Figure S5: Scheme illustrating the *R* values calculation based on XRD patterns for PSNCs (A) and PSOCs (B).

Figure S6: (A) Raman spectra of PSNC-2-800, PSNC-3-850 and PSOC specimens. (B-F) Fitted Raman spectra of PSOC, PSNC and CAC.

Figure S7: (A)-(B) Nitrogen adsorption-desorption isotherms and pore size distributions of CAC.

Figure S8: (A) XPS survey spectra of PSNC, PSOC and hydrothermal biochar. Magnified views of the C 1s, N 1s and O 1s core level XPS spectra with fits for (B) PSNC-3-850, (C) PSNC-2-800, (D) PSOC, (E) PSOC-A, (F) hydrothermal obtained biochar.

Figure S9: (A-C) Cyclic voltammograms (CVs) of PSNC-3-850, PSNC-2-800, and CAC, respectively.

Figure S10: Galvanostatic discharge/charge profiles of (A) PSNC-3-800, (B) PSNC-3-850, (C) PSNC-2-800 and (D) CAC, (E) PSNC-3-800 within voltage region of 2.7-4.2 V *vs*. Na/Na⁺.

Figure S11: IR drops of PSNC specimens and CAC in half cells.

Figure S12: The electrochemical performance of cathode carbon (A) and anode carbon (B) that were derived from the entire peanut shell without separation.

Figure S13: The electrochemical performance of PSNC-3-800 (A) and PSOC-A (B) with two different electrode mass loadings.

Figure S14: Cross section SEM images of (A) PSNC-3-800 (B) CAC, (C) PSOC-A and (D) commercial graphite thin film electrodes with commercial mass loadings.

Figure S15: The volumetric capacity of PSNC-3-800 (A) and PSOC-A (B).

Figure S16: (A) CVs of PSOC specimen at a scan rate of 0.1mVs⁻¹. (B) Galvanostatic discharge/charge profiles of PSOC at density of 0.1Ag⁻¹. (C-D) Galvanostatic discharge/charge profiles of PSOC-A (C) and PSOC (D) at current densities of 0.1, 0.2, 0.4 and 0.8Ag⁻¹. (E) Dependence of anodic and cathodic peak currents on scan rate for PSOC and PSOC-A.

Figure S17: (A) Galvanostatic discharge/charge profiles of PSNC-3-800//PSOC-A hybrid Na-ion capacitor at low current densities.

Figure S18: Cycling stability of PSNC-3-800//PSOC-A hybrid ion capacitor at a current density of 100Ag⁻¹ and voltage window of 2.2-3.8V.

Figure S19: Nyquist plots of PSNC-3-800//PSOC-A and CAC//PSOC-A after rate tests.

Figure S20: Equivalent electronic circuits used to simulate the EIS data. R_{es} is the sum of resistances of electrical connections in the experiment setup including ionic diffusion resistance in the electrolyte. R_{ct} reflects the charge transfer resistance and Z_w (Warburg-type element) represents Na diffusion impedance within carbon materials.

Hybrid system	Voltage Window	Current density	Energy density (Whkg ⁻¹)	Power density (Wkg ⁻¹)	Cycled number	Capacity retention	Ref.
PSNC-3- 800//PSOC-A (Na ⁺)	1.5-4.2V	6.4Ag ⁻¹	50-75	~8000	1000/5000/ 10000	79%/69%/ 66%	This work
PSNC-3- 800//PSOC-A (Na ⁺)	1.5-3.5V	6.4Ag ⁻¹	30-38	~7000	1000/5000/ 10000	92%/78%/ 72%	This work
PSNC-3- 800//PSOC-A (Na ⁺)-65°C	1.5-3.5V	51.2Ag ⁻¹	~20	~55000	100000	78%	This work
PSNC-3- 800//PSOC-A (Na ⁺)	1.5-3.5V	51.2Ag-1	~8	~50000	100000	88%	This work
AC//Na _x H _{2-x} Ti ₃ O ₇ (Na ⁺)	0-3V	0.25Ag-1	20-30	~200	1000	73%	43
AC//V ₂ O ₅ /CNT (Na ⁺)	0-2.8V	60C	16-20	~1700	900	78%	38
AC//NiCo ₂ O ₄ (Na ⁺)	0-3V	0.15Ag ⁻¹	11-18	~200	2000	62.5%	45
AC//V ₂ O ₅ /CNT (Li ⁺)	0.1-2.7V	30C	24-30	~850	10000	80%	106
CNS//MnO/CNS (Li ⁺)	0-4V	5Ag-1	50-70	~6000	5000	82%	44
3DGraphene//Fe ₃ O ₄ / Graphene (Li ⁺)	1-4V	2Ag ⁻¹	60-90	2500	1000	68%	39
AC//Li ₄ Ti ₅ O ₁₂ (Li ⁺)	1-3V	1.5Ag ⁻¹	22-28	~3000	2000	80%	47
AC//Soft carbon (Li ⁺)	0-4.4V	0.74Ag ⁻¹	50-80	~2000	10000	65%	40
AC//graphite (Li ⁺)	1.5 - 5.0V	0.65Ag ⁻¹	60-90	~1056	10000	63%	51
AC//hard carbon (Li ⁺)	1.5-3.9V	10C	60-75	~750	10000	82%	52

Table S1. Capacity retention comparison with literature reported hybrid devices.

Figure S21: The cyclability of Na-Na cell.