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S1. Experimental

S1. 1. The synthesis of maricite NaFePO4 

Na2CO3 (Sigma Aldrich, 99%), FeC2O4∙2H2O (Sigma Aldrich, 99%), and NH4H2PO4 

(Fluka, 98%) with molar ratios of 0.5 : 1 : 1 were used as precursors. They were thoroughly 

mixed and grounded by high energy ball-milling (HEBM) at 500 rpm over 24 hours. The 

mixed precursors were then fired at 350oC under Ar conditions for 5 hours. The mixture was 

then re-ground and manually pelletized using a disk-shaped mold. After pre-heating, we 

calcined the pellet at 600oC under Ar conditions for 10 hours.

S1. 2. Reducing particle size and improving electric conductivity of maricite NaFePO4 

 The powder had been well blended with 20 wt% Super P through dry ball-milling at 

200 rpm over 12 hours, using planetary ball-milling (pulverisette 5, Fritsch).

S1. 3. Fully desodiation of maricite NaFePO4 

Fully desodiated samples, FePO4, were prepared using stoichiometric amounts of 

NO2BF4 (95 %, Aldrich) in acetonitrile solvent (anhydrous, 99.8 %, Aldrich) according to the 

following reaction: 

NaFePO4 + NO2BF4 → FePO4 + NaBF4 + NO2.

NO2BF4 is a strong oxidizing agent equivalent to a 4.8 V potential versus Na+ / Na. The 

solution was maintained at 60 °C for 100 h. Final products of the desodiated phases were 

obtained by washing with acetonitrile using a centrifuge.
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S1. 4. Materials characterization 

The stoichiometry of the delithiated compound was determined by inductively 

coupled plasma-atomic emission spectroscopy (ICP-AES). Powder XRD was carried out on a 

Bruker D8-Advantage powder diffractometer using Cu K  radiation (= 1.54178 Å) from 2θ 𝛼

=10 to 60 o at 1s per step of 0.01o. Fe K-edge X-ray absorption spectra (XAS) were taken on 

the 10C beamline at the Pohang Accelerlator Laboratory (PAL). Fe K-edge energy 

calibration was performed using Fe metal foil as reference. A reference spectrum was 

simultaneously recorded for in-situ spectrum using Fe metal foil. Thermal-gravimetric 

analysis (TGA) was performed under an air condition at a heating rate of 10 oC min-1 using a 

Labsys.Evo (SETARAM, France) from room temperature to 900 oC. Carbon analysis was 

performed using Carbon determinator CS800 (Eltra).

S1. 5. Electrochemistry

Electrochemical tests were performed in a CR2016-type coin cell assembled in an 

Ar-filled glove-box. The slurry of 80 wt% C-coated NaFePO4, 10 wt% carbon black (Super-

P), and 10 wt% polyvinylidene fluoride dispersed in N-methy1-2-pyrrolidone (NMP) was 

prepared and cast on aluminum foil. (The final content of the carbon added is 26 wt% of the 

electrode) NMP was evaporated at 120°C for 2 hours. The mass loading of the electrode is 

2.5 mg·cm-2. Na cell was assembled in a CR2032 type coin cell with a Na counter electrode, 

separator (Celgard 2400), and 1M NaPF6 electrolyte in a mixture of EC/PC (1:1) in an Ar-

filled glove box. Li cell was assembled in a CR2032 type coin cell with a Li counter electrode, 

separator (Celgard 2400), and 1M LiPF6 electrolyte in a mixture of EC/DMC (1:1) in an Ar-

filled glove box. GITT measured at C/20 rate by the intermittent charge mode and one hour 
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of rest period (dV/dt ~10-6 V s-1) is introduced during a charging step. The charge/discharge 

test was performed using a galvanostat (WonA Tech).

S2: Computational details

S2.1. Density functional theory calculations 

Density functional theory (DFT) calculations were conducted using the spin-polarized 

generalized gradient approximation (GGA) with a Perdew-Burke-Ernzerhof (PBE) 

functional.1 We used the Vienna ab initio simulation package (VASP), in which a plane-wave 

basis set and the projector-augmented wave (PAW) method were implemented.2 Hubbard U 

parameters (GGA+U) were applied to correct for self-interaction errors within the GGA.3 An 

effective U value of 4.3 eV was used for Fe ion.4 A plane-wave basis set with a kinetic-

energy cutoff of 520 eV and 2 × 3 × 4 or 2 × 2 × 2 Monkhorst-Pack k-point meshes were used 

to ensure that the total energies converged to less than 5 meV per formula unit (fu). 

S2.2. Nudged elastic band (NEB) calculations

The Na diffusivity in Na1-xFePO4 was estimated from the QM calculations. We used the 

nudged elastic band (NEB) method to determine the activation barriers for Na/Li hopping 

between stable sites. The activation barriers of Na were calculated in the dilute vacancy (or 

dilute Na) limit with 1 vacancy (or 1 Na) in the 1 × 2 × 2 supercells containing 16 formula 

unit of Na1-xFePO4. All lattice parameters were fixed at fully relaxed Na15/16FePO4 and 

Na1/16FePO4 from the QM; all internal degrees of freedom were relaxed during NEB 

calculations. The NEB calculations, which started with five replicas of each system, initiated 
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by the linear interpolation between the initial and final states of the diffusion pathways, were 

performed within the GGA approximation instead of the GGA+U approximation to exclude 

the interaction between Na diffusion and the charge transfer processes. Li diffusivity in Li1-

xFePO4 was estimated in a similar manner.

S2.3. Multiscale methods to investigate Na diffusion in a-FePO4

1) Constructing the amorphous structure of FePO4 by a melt-and-quenching process

Ab initio molecular dynamics (AIMD) calculations were used to construct a-FePO4 

structure via melt-and-quenching. AIMD calculations were performed using the PBE 

functional with the NVT (canonical) ensemble, as implemented in VASP. During AIMD, the 

lattice parameters were fixed in a fully relaxed state of olivine FePO4 within the GGA. The 1 

× 2 × 2 supercell of olivine FePO4 was adopted as a starting point of the AIMD. At first, we 

held the temperature at 2500 K to mimic the liquid state of FePO4. Three a-FePO4 samples 

were prepared using three holding times (10, 15 and 20 ps) at 2500 K, as shown in 

Supporting Figure S2. The melted structure was quenched to room temperature (300 K) and 

then allowed to relax fully (within the GGA). The time step and quenching rate were 0.5 fs 

and 100 K ps-1 at high temperature (1000 - 2500 K) and 1 fs and 35 K ps-1 at low temperature 

(300 –1000 K). Amorphorization of FePO4 was confirmed by the radial distribution function 

(RDF). Supporting Figure S3 shows the RDFs of olivine FePO4 and a-FePO4, indicating that 

olivine FePO4 was well crystallized, whereas a-FePO4 was fully disordered.

2) Finding stable Na sites in a-FePO4
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Stable Na sites in a-FePO4 were identified by grand canonical Monte Carlo (GCMC) 

simulations. The GCMC simulations were performed at 600 K with the sorption module 

within the Cerius 2 software package [Cerius2 Software, version 4.10, Accelrys Inc.: San 

Diego, CA.] using the DREIDING force-field parameters for the Li-O interaction.5 We 

carried out GCMC simulations on three samples of a-FePO4 constructed by AIMD and found 

16 stable Na sites for each system. The Na site energies were evaluated by positioning one 

Na ion at one of the 16 sites identified and comparing the DFT energies of Na1/16FePO4. 

3) Visualizing plausible Na diffusion pathways

The possible Na diffusion pathways of the electrode materials were estimated using 

the bond-valence summation (BVS) method.6, 7 The BV sum of the Na ions in the structure 

was calculated by summing up the bond-valence of Na to all oxygen ions within 7.5 Å at 

each grid point. The Na ion was located in the areas of low BV mismatch compared with 

ideal valence conditions (Na: 1+) in the structure; thus, the Na ion migrated along the low BV 

mismatch areas. The BV mismatch maps of the three samples of a-FePO4 and olivine FePO4 

were constructed using the 3DBVSMAPPER program8 and drawn by VESTA program9, as 

shown in Figure 4 and Figure S4. 

4) Estimating the activation barriers of Na hopping

We excluded any Na sites, whose the site energies were 1 eV higher than the most 

stable Na site. Then, we chose every pair of Na sites within 5 Å, and calculated the activation 

energies for Na hopping using the NEB method, if the two sites were connected to each other 
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within the BV mismatch maps. Because there were no representative diffusion pathways, 

statistical evaluation with more than one a-FePO4 sample and a diffusion pathway was 

required to estimate the activation energies of Na hopping in the amorphous structure.
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Figure S1. The XRD pattern and TEM image of C-NaFePO4 
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Figure S2. The TGA analysis of C-NaFePO4 
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Figure S3. (a) Galvanostatic curves of maricite NaFePO4 over 100 cycles at C/20 in Li cell 

(charging under CCCV mode (C/20 rate from 4.8V to 2.0V and 5 hour holding at 4.8V))
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Figure S4. The melt-and-quenching process used to prepare amorphous FePO4 structure with 

three different holding times at high temperature. 
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Figure S5. The structural difference between olivine FePO4 and a-FePO4. The structure of (a) 

olivine FePO4 and (b) a-FePO4. (c) Radial distribution functions (RDF) of olivine FePO4 

(solid line) and a-FePO4 (dashed line). Brown polyhedra indicate FeOx and orange tetrahedra 

indicate PO4.
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Figure S6. The plausible diffusion pathways of olivine FePO4 and a-FePO4, which were 

determined by bond valence summation (BVS) method. Yellow isosurfaces indicate plausible 

Na diffusion pathways. Brown balls and red balls indicate Fe and O atoms, respectively.
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Figure S7. The activation barriers for Na hopping along two diffusion pathways of maricite 

Na1-xFePO4 (x ≈ 1). The diffusion pathways are presented in Figure 2. The diffusion barriers 

for Na hopping in maricite Na1-xFePO4 (x ≈ 1) are much higher than those in maricite Na1-

xFePO4 (x ≈ 0). This seems due to larger electrostatic repulsion between Na and oxidized Fe3+ 

ions (x ≈ 1) than that between Na and Fe2+ ions (x ≈ 0)
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Figure S8. The activation barrier for Li ion in a-FePO4. The diffusion pathways for Li ion are 

same with those for Na ion, as shown in Figure 4.
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Figure S9. GITT of maricite NaFePO4 during first charge
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Table S1. Carbon analysis of C-NaFePO4
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Table S2. Formation energies of various NaxFePO4 (x = 0, 1)
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Table S3. Atomic ratio of fully desodiated maricite NaFePO4
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