
Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

A single atom change "switches-on" solar-to-energy conversion efficiency on Znporphyrin based Dye Sensitized Solar Cell to 10.5%.

Figure 1S. Molecular dipole for the dyes described at the manuscript.

We also have include the Excel files that show the integration of our IPCE against the 1.5.AM G solar spectrum using the Excel procedure developed by NREL (National Renewable Energy Labs, USA) which can be found free on charge in the internet.

nlopez@iciq.es

Files For IPCE Integration are Excel files:

IPCE (LCVC01). xlsx

30/01/2015

IPCE (LCVC02).xlsx

IPCE (LCVC03).xlsx

Below you can find pictures extracted from the Excel files:

This spreadsheet computes the photocurrent resulting from the overlap integral between an arbitrary IPCE spectrum and the AM1.5G Global spectrum (ASTM G173-03).

Beta 0.99 + Mod by Werther (Linear interpolation of QE values between points)

LCV01

Paste quantum efficiency data below: (Wavelength between 300 nm and 1240 nm, with any arbitrary spacing)

Wavelength (nm)	QE (%)	
300	12,66422758	
310	3,548653858	
320	2,834135601	
330	2,469770637	$J_{SC} = 7,56 \text{ mA/cm}^2$
340	3,166170348	
350	9,516599292	
360	12,72964291	
370	9,824270218	
380	7,627211294	
390	8,724174215	
400	13,7866617	
410	23,1216311	
420	35,40407381	
430	46,44582613	
440	54,65537294	
450	59,55835027	
460	58,49672162	
470	52,05313805	
480	44,36593419	
490	39,3037028	
500	35,3527906	
510	32,82746582	
520	30,1875154	
530	28,22701729	
540	26,27721639	
550	24,64359455	
560	22,31827599	
570	20,47222188	
580	18,69597199	
590	16,3504839	
600	14,2349475	
620	15,34228383	
630	18,16897473	
640	21,75979956	
650	26,51379741	
660	33,26999596	
670	40,47819686	
680	46,86614225	
690	48,52408804	

This spreadsheet computes the photocurrent resulting from the overlap integral between an arbitrary IPCE spectrum and the AM1.5G Global spectrum (ASTM G173-03).

Beta 0.99 + Mod by Werther (Linear interpolation of QE values between points)

LCVC02

Paste quantum efficiency data below: (Wavelength between 300 nm and 1240 nm, with any arbitrary spacing)

Wavelength (nm)	QE (%)	
300	199,459	
310	88,7552	
320	57,4205	
330	43,0059	$J_{sc} = 19,18 \text{ mA/cm}^2$
340	34,6742	
350	31,0784	
360	31,3467	
370	32,8018	
380	37,2435	
390	43,1206	
400	51,649	
410	59,2844	
420	65,2849	
430	68,5602	
440	70,0421	
450	72,7856	
460	74,2348	
470	75,3968	
480	76,5915	
490	76,2071	
500	76,7964	
510	76,1012	
520	75,7302	
530	75,3748	
540	74,7295	
550	74,7081	
560	75,0966	
570	74,7925	
580	73,2895	
590	72,3829	
600	69,9985	
610	71,207	
620	74,0012	
630	77,6205	
640	81,9596	
650	84,3411	
660	87,5018	
670	89,2137	
680	89,1686	

This spreadsheet computes the photocurrent resulting from the overlap integral between an arbitrary IPCE spectrum and the AM1.5G Global spectrum (ASTM G173-03).

Beta 0.99 + Mod by Werther (Linear interpolation of QE values between points)

LCVC03

Paste quantum efficiency data below: (Wavelength between 300 nm and 1240 nm, with any arbitrary spacing)

M	OF (0/)	
Wavelength (nm) 300	QE (%) 5,955730536	
310 320	3,199135027	
	2,943798984	$I = EG4 \text{ mA/om}^2$
330	2,702546259	$J_{sc} = 5,61 \text{ mA/cm}^2$
340	2,903031963	
350	6,960533469	
360	11,04557216	
370	12,52721363	
380	13,91648445	
390	16,1570108	
400	20,1406925	
410	25,88361898	
420	31,97587041	
430	35,63859391	
440	36,86328547	
450	37,71869312	
460	37,12852022	
470	36,80366366	
480	35,41446401	
490	32,89947828	
500	30,51844388	
510	27,27825214	
520	24,91905704	
530	22,47108088	
540	20,4303	
550	18,63394821	
560	16,97922127	
570	15,1801138	
580	13,55138487	
590	12,12845409	
600	11,02952371	
610	11,13460997	
620	12,87079904	
630	15,55507805	
640	19,10017675	
650	23,4628037	
660	28,82380969	
670	33,95685766	
680	35,22041574	