High-performance symmetric sodium-ion batteries using a new bipolar material O3-type Na_{0.8}Ni_{0.4}Ti_{0.6}O₂

Shaohua Guo, Haijun Yu *, Pan Liu, Yang Ren, Tao Zhang, Mingwei Chen, Masayoshi Ishida, Haoshen Zhou *

Table S1

Table S1 Lattice parameters of O3-type $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ powder samples after Rietveld refinement.

Phase	α-Na	FeO ₂				
Symmetry	Rhombohedral					
Space Group	R-3m					
	a (Å)	2.96785 (2)				
	b (Å)	2.96785 (2)				
	c (Å)	16.27990(9)				
Cell parameters	α (°)	90.000				
	β (°)	90.000				
	γ (°)	120.000				
Agreement factors	Volume (ų)	124.184(1)				
	R _{wp} (%)	14.844				
	R _p (%)	10.359				
	S	0.8375				

Table S2

Table S2 Rietveld refinement atomic coordinates for O3-type $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ based on HR-SXRD data.

Atom	Wyck position	Х	У	Z	Biso
Na	3b	0.000	0.000	0.500	1.99(3)
Ni	3a	0.000	0.000	0.000	0.54(1)
Ti	3a	0.000	0.000	0.000	0.54(1)
Ο	6c	0.000	0.000	0.26825(7)	0.66(2)

Table S3

Table S3 The comparison of the electrochemical performance between our as-prepared $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ and the reported $Na_{2/3}Ni_{1/3}Ti_{2/3}O_2$ samples^[1] as bipolar materials in sodium half cells.

	Cathode performance		Anode performance			Full cells performance			
	Capacity(0.2C)	Rate(1C)	Cycles	Capacity(0.2C)	Rate(1C)	Cycles	Capacity(0.2C)	Rate(1C)	Cycles
Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂	83mAh/g	63mAh/g	250cycles	107mAh/g	62mAh/g	250cycles	85 mAh/g	53mAh/g	150cycles
Na _{2/3} Ni _{1/3} Ti _{2/3} O ₂ ¹	75mAh/g	35mAh/g	30cycles	78mAh/g	53mAh/g	25cycles		-	

[1] R. Shanmugam, W. Lai, ECS Electrochemistry *Letters 2014, 3, A23-A25*.

Figure S1. (a) The SAED patterns of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ samples. (b) HR-TEM bright field images of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ samples.

Figure S2. (a) The initial charge profile of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2/Na$ half cells. (b) The XPS spectra of Ni-2p peaks of the desodiated $Na_{0.8-x}Ni_{0.4}Ti_{0.6}O_2$ after initial charge process.

Figure S3. Cycle performance and relative coulombic efficiency of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ //Na half cell with the voltage range of 2-4 V for 250 cycles at a 1C rate.

Figure S4. Cycle performance and relative coulombic efficiency of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2//Na$ half cell with the voltage range of 0.01-2.5 V for 250 cycles at a 1C rate.

Figure S5. The first charge-discharge profile of bipolar $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ -based symmetric sodium-ion batteries.

Figure S6. Structural evolution using $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ as cathode (a) The first chargedischarge profile of the $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2/Na$ half cell in a low potential area, and the green points correspond to the different charge-discharge states conducted by ex-situ XRD experiment. (b) The ex-situ XRD patterns of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ at the different charge-discharge states shown in (a). (c) The expanded view in the regions of 15-17° and 30-38° for the ex-situ XRD patterns shown in (b). (d) The SAED patterns (e) HAADF-STEM image and (f) ABF-STEM image of the fully charged (Point 3 in (a)) $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ samples projected along [1¹0] direction.

Figure S7. Schematic of the phase transition from O3-type $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ to P3-type $Na_{0.8-x}Ni_{0.4}Ti_{0.6}O_2$ in the half cell of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2/Na$ with the voltage range of 2-4 V.

Figure S8. Structural evolution using $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ as anode (a) The first dischargecharge profile of the $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2/Na$ half cell, and the brown points correspond to the different discharge-charge states conducted by ex-situ XRD experiment. (b) The exsitu XRD patterns of $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ at the different discharge-charge states shown in (a). (c) The SAED patterns (d) HAADF-STEM image and (e) ABF-STEM image of the fully discharged (Point 4 in (a)) $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$ samples projected along [100] direction. The insets of (d) and (e) in top-left corners show the typical sodium (bule) and transition metal (green) occupancies in O3 layered structure.

Figure S9. Differential scanning calorimetry (DSC) spectra of the pristine $Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$, desodiated $Na_{0.8-x}Ni_{0.4}Ti_{0.6}O_2$ (charging to 4 V) and sodiated $Na_{0.8+y}Ni_{0.4}Ti_{0.6}O_2$ (discharging to 0.01 V).