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C contains the concentration profiles of the excited states, the rows of S represent the transient 
absorption spectra of the states, and E ideally only contains experimental noise. In order to 
factorize the experimentally obtained data matrix and to determine the concentration profiles 
and cross-sections of the individual excited states, we employed multivariate curve resolution. 
Multivariate curve resolution is a soft-modeling approach used to analyze transient absorption 
data, independent of any a priori knowledge of the excited states that constitute the data 
matrix. Our analysis is based on the MCR-ALS algorithm developed by Tauler et al.,[2] and a 
detailed discussion of the application of this technique to TA data has recently been presented 
by us.[1] The inherent advantage of a soft-modeling method is its intrinsic independence from 
any photophysical model typically required for the data analysis. Compared to hard-modeling, 
in which a kinetic model of coupled rate equations is used on the basis of an a priori known 
number of excited and ground states and interconversion channels between them, neither any 
assumption of the number of excited states nor their decay processes is required to perform an 
MCR-ALS analysis. Instead, the number of excited states and the initial concentration profiles 
describing the transient data surface are determined in an evolving factor analysis (EFA) as 
shown in figure S4. 
 
Subsequent matrix division yields the corresponding spectra, while constraints such as non-
negativity of concentrations and non-positivity / non-negativity of the spectra can be applied. 
From the obtained spectra, a new set of concentration profiles is calculated and the procedure 
is repeated until a given tolerance criterion is met. However, the factorization of a data surface 
that is described by multiple species is never unique. Hence, an obtained solution is not 
necessarily a physically meaningful solution as can easily be seen from the following 
mathematical transformation: 
  

 
 
In fact, any invertible matrix T generates a new set of concentration profiles, namely Cnew, 
and spectra, namely Snew, equally-well describing the experimental data surface. We showed 
recently that in the case of two species with one known spectrum the rotational ambiguity can 
be expressed as a single parameter.[1] This was used in the data analysis to quantify the 
uncertainty of our calculated solutions (see figure S5). Furthermore, we factorized the data 
measured at different pump fluences in one augmented data matrix, thereby guaranteeing that 
the calculated spectra are equal for all experimentally measured fluences. 
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Figure S5: MCR-ALS analysis of PSBTBT:PC70BM ns-µs TA data. a) The open squares 
represent the spectrum of species 1 obtained from MCR-ALS and the black dashed line is 
spectrum 2 obtained from MCR-ALS. The solid black line is the triplet spectrum measured on 
a PSBTBT:PtOEP blend. The colored dashed lines represent rotations of species 2 for species 
1 being fixed to the triplet spectrum. b) Corresponding concentration profiles. Note that for 
the rotations only the concentration profiles of species 1 are displayed, as rotation of species 2 
with a fixed spectrum of species 1 only scales the concentration profiles of species 2.  
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Figure S7: Oxidation experiments performed on PSBTBT:PC70BM. a) Differential absorption 
spectra after oxidation by FeCl3 in acetonitrile and iodine vapor. For oxidation with FeCl3 the 
blend films were dipped into the FeCl3 solution and rinsed with acetonitrile to get rid of 
additional FeCl3. For oxidation in iodine vapor, the blend films were placed in iodine gas and 
subsequently measured for several times as the oxidation appeared to be reversible with 
iodine. b) Comparison of the charge absorption obtained from oxidation with the cw-PIA 
spectrum of the blend. 
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Figure S8: Normalized charge kinetics in PSBTBT:PC70BM. 
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Figure S9: Normalized concentration profiles of the charges (a) and triplets (b) for different 
excitation fluences in PSBTBT:PC70BM. 
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Figure S10: MCR-ALS results of the ns-µs TA data of PCPDTBT:PC60BM prepared with 
ODT. The exciton spectrum is obtained from measurements on pristine PCPDTBT. The 
squares represent the short time TA spectrum of the blend after 20ps delay. 
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Figure S11: MCR-ALS results of the ns-µs TA data of PCPDTBT:PC60BM prepared without 
ODT. The squares represent the short time TA spectrum of the blend after 20ps delay, and the 
dashed line is the triplet spectrum obtained from measurements on the pristine material. 
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