
SUPPLEMENTARY INFORMATION 
(Lu, et al., “Chamber Evaluation…”) 

 

The use of an upstream separation column limits the number of vapors presented to 

the sensor array simultaneously.  This, in turn, reduces the problem of vapor recognition to a 

series of simpler analyses applied to each retention time window individually.  For this study, 

all of the vapors could be chromatographically resolved in ~ 6 minutes by adjusting the 

pressure tuning and temperature programming parameters of the separation module.  

Therefore the confirmation of vapor identity reduces to one of assessing the fidelity of the 

measured response pattern to that in the calibration library.  That is, the goodness of fit of an 

unknown sample to its calibration set must be tested in order to conclude with confidence that 

the resolved peaks observed with the array are indeed attributable to the vapor expected to 

elute at the given retention time.   

 

 

Figure S1.  Graphical representation of the threshold distance defining vapor identity. A single 

principal component (PC) model is assumed for illustration and the threshold is established at a 

predefined significance level (e.g., 0.05) on the basis of response patterns determined during 

calibration (i.e., training). The central solid line is the PC axis, which is surrounded by 

calibration samples denoted by points. The contour of the constant distance from the PC axis 

defined by Smax (see text) is in the shape of a cylinder. 

 

The approach can be illustrated by a one-principal-component classification model as 

shown in Fig. S1, constructed from a calibration data set using principal components 
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analysis.1 The threshold of maximum distance from a subsequent sample to the centroid of 

the calibration set in multi-dimensional space can be computed at a certain significance level 

from the Mahalanobis distance (see below) after projection of the sample vector onto the 

principal component (PC) axes. If a new sample falls within the boundary established by this 

threshold, the sample is assigned with a known confidence level the identity of the vapor 

corresponding to that model. Otherwise it is rejected.  We start with a calibration data set for 

a target vapor that can be expressed in matrix form as follows: 
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where xnm is the response of the mth sensor to the nth calibration sample of the target vapor.  

PC modeling of this data set separates the data into a model matrix and a residual matrix.  

The latter is used to calculate a residual standard deviation (RSD, geometrically the 

Mahalanobis distance when dealing with vector quantities), which is used for determining the 

range of allowable variability in assessing the response pattern fidelity of subsequent test 

samples.  

Cross-validation was used to obtain models with maximum predictive ability. A 

common cross-validation technique, which is well suited for small data sets, is the leave-one-

out procedure in which one row at-a-time is deleted from the data matrix X and the PC(s) that 

best account for the variance in the remaining data are calculated. The resulting n PC models 

(the number of models is the same as the number of calibration samples) are used to predict 

the response patterns for the left-out samples (models may contain one or more PCs).  A 

metric called the predicted residual error sum of squares (PRESS) measures the prediction 
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error of each PC model.  The deviation between the actual and predicted values is used to 

estimate an overall prediction error. The model providing the minimum prediction error is 

finally calculated with all samples included. By this procedure, all samples are utilized both 

for calculating and for validating the model.  

To assess the fidelity of a subsequent (unknown) sample to the established model, the 

following equation is used:  
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where ei(v) is the residual (vector) of the unknown sample after being fitted to the model for 

vapor v;  Xi’ is the transpose of the unknown sample response vector of m elements (m is the 

number of sensors in the array); X
_

’(v) is the transpose of the mean vector of the vapor v; A is 

the dimension of the model (i.e., the optimal number of principal components) determined by 

cross-validation;  tia is the “score” of sample i on the principal component a, and pa is the 

corresponding loading vector (weighting of all variables on principal component a). The 

“score” is the weight of each sample on the each PC, where a sample is the collection of 

responses on all sensors to a given concentration of a given vapor.  The loading vector 

determines which sensors (referred to generically as variables) provide the greatest influence, 

or weight, on the magnitude and direction (in multi-dimensional space) of the PC.   

The Mahalanobis distance, Si, of an unknown sample i to the model under 

consideration, can be calculated via:  
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where m is the number of sensors, ei(v) is the residual vector of the unknown sample after 

fitting to the model for vapor v and ei’(v) is the transposed vector of ei(v). The division by (m-

A) provides a distance measure that is independent of the number of variables and corrected 

for the loss of freedom due to the fitting of A principal components.   

The Si values for all n samples in the calibration set can also be calculated using Eq. 

S3 and collected in a distance matrix S of dimension n×1. The mean RSD, Sv, of the model 

for vapor v is defined by the following equation: 
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where S’ is the transpose of distance matrix S. The division by (n-A-1) gives a scale that is 

also independent of the number of samples and corrected for the loss in degrees of freedom 

due to the mean-centering and fitting of A principal components in Eq. S2.        

Comparison of the RSD for an unknown sample (calculated by Eq. S3) to the mean 

RSD for the vapor v (calculated by Eq. S4) gives a direct measure of its similarity to the 

model.  An F statistic was used for the comparison of Si
2 and Sv

2. The degrees of freedom 

used to obtain the critical F-value are (m-A) and (m-A)(n -A-1), respectively, for Si
2 and Sv

2. 

The upper limit of the RSD for any sample, Smax, can thus be calculated:  

 

                                                                 critv FSS 22
max =                                                        (S5) 

 

Fcrit is usually determined at a significance level of 1% or 5% (i.e., p = 0.01 or 0.05). The 

latter level is a more stringent boundary, allowing 1 out of 20 samples that fit the model, on 

average, to be mis-identified as an outlier. In the former case, only 1 out of 100 samples that 

fit is rejected.  If  Si of an unknown response pattern is less than or equal to Smax, then this 



 5

sample is assigned the identity of the vapor described by that particular model. If Si > Smax, 

then the sample is rejected indicating that the response pattern has become distorted enough 

to suggest that the target vapor is contaminated with another vapor or that the response 

pattern is not due to the target vapor.   
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