Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is © The Royal Society of Chemistry 2007

Appendix 1 – Low Concentrations: Limit on the Limit of Quantitation (LOQ)

Suppose raw mass estimates m_{raw} may be modeled as:

$$m_{raw} = m_{ref} \cdot (1 + bias) + m_{ref} \cdot \epsilon [TRSD_{raw}] + \epsilon_0[\sigma_{raw}],$$

where *bias* is specific to a low-concentration range, and where the ε s are normally distributed random variables. Often at higher concentrations, ε_0 is negligible and the *relative* standard deviation is roughly constant over a concentration range. However, at low concentrations sampled, the standard deviation may become independent of the mass, hence the term ε_0 giving the limiting standard deviation σ_{raw} .

In evaluating the method many pairs of measurements m_{raw} and m_{ref} are made, yielding an estimate *biâs*:

$$bias = \sum (m_{raw} - m_{ref})/m_{ref}$$

The bias-corrected mass estimate m is then

$$\begin{split} m &= m_{raw} / (1 + bi\hat{a}s) \\ &= m_{ref} \frac{1 + bi\hat{a}s}{1 + bi\hat{a}s} + m_{ref} \cdot \varepsilon[TRSD] + \varepsilon_0[\sigma], \end{split}$$

where the bias-corrected σ is:

$$\sigma = \sigma_{raw} / (1 + bi \hat{a} s),$$

needed for estimating an upper limit on the *limit of quantitation LOQ* given by

$$LOQ = 10 \times \sigma.$$

Thus, the corrected error is:

$$error \equiv (m - m_{ref})/m_{ref}$$

$$\approx \varepsilon[TRSD] + \varepsilon_0[\sigma]/m_{ref}',$$

neglecting a term proportional to *bias* – *biâs*. Ignoring correlation between ε_0 and ε , the expected value:

$$E[error^2] \approx TRSD^2 + \sigma^2 \cdot m_{ref}^{-2}$$

Thus, by approximating *error*² as normally distributed, through linear regression on m_{ref}^{-2} , the parameter σ^2 may be estimated and limits determined.

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is © The Royal Society of Chemistry 2007

Example - low-concentration XRF and ICP (reference) data

Twenty eight data points with m_{ref} between 5 µg and 15 µg were taken, with bias estimated at 6.4%. The data for *error*² are shown in the figure:

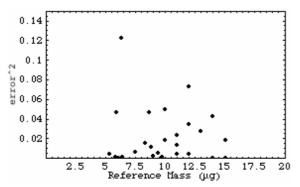


Figure A-1.

Though there is no obvious divergence proportional to m_{ref}^{-2} visible, limits on σ^2 may yet be determined through linear regression, the results of which are presented here:

```
ANOVATable \rightarrow
```

	DF	SumOfSq	MeanSq	FRatio	PValue
Model	1	0.0317432	0.0317432	1.46243	0.237427
Error	26	0.564352	0.0217058		,
Total	27	0.596095			
ParameterCITable \rightarrow					
	Estimate	SE	CI		
1	0.0507728	0.0503441	{-0.0527	711, 0.154257}	
$\frac{1}{x^2}$	-3.66646	3.03187	{ -9.8985	55, 2.56563}	

ParameterConfidenceRegion → Ellipsoid[{0.0507728, -3.66646}, {7.87079, 0.072266}, {{-0.0138343, 0.999904}, {0.999904, 0.0138343}}]

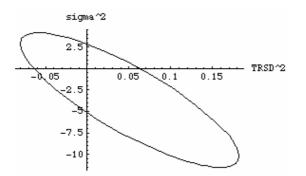


Figure A-2. 95% confidence region on the determined parameters.

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is © The Royal Society of Chemistry 2007

The confidence intervals given in the table are two-sided at the 95% confidence level, whereas we are interested in a single-sided interval $\sigma^2 < \sigma_{95\%}^2$:

$$\sigma_{95\%}^2 = \hat{\sigma}^2 + SE \cdot t_{\upsilon 0.95},$$

where $t_{v=0.95} = 1.7056$ is the 95% StudentT quantile at v = 26 degrees of freedom. Thus,

$$\sigma_{95\%}^2 = -3.66646 + 1.70562 \times 3.03187 = 1.505.$$

Finally,

$$LOQ_{95\%} = 10 \times \text{Sqrt}[\sigma_{95\%}^2]$$

$$= 12.3 \ \mu g.$$

For this set of data, $LOQ < 12.3 \mu g$ at the 95% confidence level.