Electronic Supplementary Information

Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery

⁵ Beate I. Escher,^{*^a} Nadine Bramaz,^a Pamela Quayle,^{a,b} Sibylle Rutishauser,^{a,b} and Etiënne L. M. Vermeirssen^a

More details on the validation of extraction and comparison to earlier extraction studies

- ¹⁰ As is discussed in the main manuscript, the focus of this study is on evaluating the toxicity of micropollutants of moderate hydrophobicity covering a window of octanol-water partitioning coefficients logK_{ow} in the range of 0 to 5. Accordingly, the following more polar and hydrophilic solid
- ¹⁵ phase materials were evaluated: (i) 100 mg LiChrolut[®] EN plus 250 mg LiChrolut[®] RP-C18, for extraction procedure see above. (ii) Empore[™] SDB-RPS disks (Infochroma AG, Zug, Switzerland), and (iii) Empore[™] C18 disks (Infochroma AG, Zug, Switzerland). In earlier work we also tested the
- ²⁰ following additional phases using a cocktail of various pharmaceuticals and urine:¹ (iv) 200 or 250 mg Carbopack (ENVI-Carb 120/400 mesh, Supelco, Bellafonte, U.S.A.), (v) 500 mg Isolute C18 (Separtis, Grellingen, Switzerland), (vi) 200 mg Isolute Env+ (polystyrene-divinylbenzene copolymer)
- ²⁵ (Separtis, Grellingen, Switzerland), (vii) 200 mg Oasis HLB (N-vinylpyrrolidone- divinylbenzene copolymer) (Waters, Bergen op Zoom, Netherlands), (viii) 200 mg Chromabond EASY (Macherey Nagel, Oensingen, Switzerland) (ix) Extrelute NT 3 for 3mL sample (Merck, VWR, Dietikon, ³⁰ Switzerland). For comparison, a selection of the results from

this earlier study¹ is also presented below.

As the previous work has demonstrated, the recovery of the SPE (defined as the ratio of EC_{50} of the cocktail prior to SPE to EC_{50} of cocktail after SPE) with all particulate SPE ³⁵ materials in cartridges was comparable and lay between 99%

- and 159% for Lichrolut EN/C18, Carbopack, Isolute C18, Isolute Env+ and Oasis HLB, and was <90% only for Chromabond and Extrelut.¹ Since the matrix effect in urine (defined as the ratio of EC_{50} cocktail in urine after SPE to
- ⁴⁰ EC₅₀ cocktail in water after SPE) was best, i.e. close to one, for Lichrolut EN/C18, this phase was used in an earlier study with urine.^{1,2} Leusch et al. found similarly good results for various SPE phases including Oasis HLB, C18 and Isolute.³
- Here, we additionally tested the two Empore[™] disks SDB-⁴⁵ RPS (in the following abbreviated by SDB) and C18 because the Empore[™] disks can also be applied for passive sampling, as a recent study in an Australian STP has demonstrated.⁴

In Figure ESI1, the baseline-TEQ in the bioluminescence inhibition test with *V. fischeri* (Fig. ESI1A), the DEQ from

⁵⁰ the 24 h IPAM endpoint (Fig. ESI1B) and the PTEQ from the AChE inhibition test (Fig. ESI1CC) are depicted for Lichrolut EN/C18 and the two EmporeTM disks, SDB and C18 in all investigated wastewater and surface water samples with and

without added cocktail. The results for the YES are given in ⁵⁵ the main manuscript (Figure 2).

Fig. ESI1 Extraction efficiency of the three SPE methods using Lichrolut EN/C18 and the two Empore[™] disks SDB and C18 as solid phase. (A) Baseline-TEQ determined with the bioluminescence inhibition test with *V. fischeri*, (B) diuron equivalent concentrations DEQ determined for the 24 h IPAM endpoint with the combined algae test, (C) parathion

equivalent concentration PTEQ determined with the AChE inhibition test.

This journal is © The Royal Society of Chemistry [2008]

J. Environ. Monit., [2008], [vol], 00–00 | 1

In the bioluminescence inhibition test, the added cocktail did not dominate the overall effect. Separate extraction experiments confirmed that the volatile 3,5-dichlorophenol was evaporated during the SPE extraction procedure. ⁵ Therefore it was not possible to do a full mass balance of the experiment. Because of this observation, only the first sample series in 2006 was evaporated to dryness after SPE, subsequent samples were only reduced to 500 μ L of eluate and then made up to exactly 1 ml of extract. Nevertheless it

¹⁰ was possible to compare the different extraction methods. The baseline-TEQ were comparable for a given sample (Fig. ESIIA), indicating that the recovery is similar with all three extraction methods. In fact, the secondary and final effluent and surface water samples were very uniform while the ¹⁵ primary effluent sample varied by a factor of two, indicating some variability due to large matrix effects.

The DEQ derived from the 24 h IPAM endpoint of the combined algae test are a mixed indicator of specific inhibition of photosystem II and baseline toxicity, as is

²⁰ discussed in the accompanying paper.⁵ Again, there was no significant difference between the SPE extraction methods using Lichrolut EN/C18 and the two Empore[™] disks, SBD

45

and C18. The DEQ were uniform for the primary effluent samples and they were well below the spike of 0.7 μ g L⁻¹ ²⁵ diuron indicating that the extraction efficiency was not perfect for this sample, as was similar for the baseline-TEQ, presumably due to the high load of toxicant and matrix effects. In effluent and river water, the samples with spiked cocktail, which contained 0.7 μ g L⁻¹ diuron, had ³⁰ correspondingly higher DEQ than the samples. This is indicated in Figure ES11B by the grey bars. Thus, extraction efficiency must have been close to 100% despite the matrix components.

In the AChE inhibition test, only effluent, river and ³⁵ mixtures thereof were tested (Fig. ESI1C). With Lichrolut EN/C18 and SDB the samples plus computationally added 2.9 μ g L⁻¹ PTEQ gave always slightly higher PTEQ than when 2.9 μ g L⁻¹ parathion was added prior to the extraction, while the PTEQ were similar when C18 was used as SPE material.

⁴⁰ In the umuC test, all samples spiked with 1.5 μ M 2aminoanthracene were positive at REF of 20 and above and did not exhibit any genotoxicity without spiked 2aminoanthracene up to an REF of 20 (primary effluent) to 100 (river).

Table ESI1 Detailed overview of results of the June 2007 sampling campaign.

	Primary effluent			Secondary effluent		Final effluent			River upstream of STP		River downstream of STP		Procedural blank	
Sample	1	2	3	1	2	3	1	2	3	1	2	1	2	
Inhibition of bacte	rial lumi	nescence												
TEQ (mg L ⁻¹) standard	5.73	3.20	8.80	0.45	0.43	0.47	0.31	0.31	0.29	0.45	0.46	0.35	0.51	0.01
deviation ^a	1.01	0.93	3.07	0.08	0.05	0.03	0.07	0.03	0.05	0.10	0.06	0.05	0.10	0.00
EC10 (REF)	0.24	0.45	0.17	3.08	3.20	2.88	4.51	4.45	4.76	3.06	2.99	3.93	2.72	241
standard deviation	0.05	0.13	0.06	0.57	0.41	0.17	0.95	0.36	0.85	0.69	0.42	0.49	0.56	43
Inhibition of algal	growth													
TEQ (mg L ⁻¹)	4.01	3.16	6.79	0.70	0.66	0.59	0.43	0.65	0.68	0.57	0.52	0.64	0.70	0.08
standard deviation	1.76	1.71	2.61	0.05	0.07	0.19	0.26	0.16	0.12	0.01	0.12	0.49	0.24	0.04
EC10 (REF)	1.05	1.16	0.51	1.70	1.25	1.09	1.47	1.00	0.89	1.59	1.64	2.33	1.61	25
standard deviation	0.08	0.40	0.02	0.04	0.25	0.10	0.13	0.21	0.21	0.53	0.08	1.12	0.60	3
Inhibition of photo	synthesis	s (2 h IPA)	M)											
$DEQ (\mu g L^{-1})$	0.26	0.25	0.33	0.14	0.15	0.18	0.18	0.19	0.19	0.16	0.31	0.18	0.20	0.0018
standard deviation	0.06	0.09	0.10	0.05	0.05	0.07	0.06	0.06	0.09	0.10	0.09	0.04	0.12	0.0005
EC10 (REF)	1.93	3.18	2.59	2.64	2.54	3.55	3.51	3.20	3.35	4.78	1.98	3.34	3.47	342
standard deviation	0.31	0.20	0.16	0.69	0.37	0.97	1.48	0.90	1.55	3.14	0.56	0.73	2.00	89
Inhibition of acety	choline e	esterase												
PTEQ ($\mu g L^{-1}$)	2.63	2.47	3.78	0.57	0.48	0.46	0.51	0.32	0.41	0.36	0.18	0.18	0.23	0.02
standard deviation	0.83	0.61	0.44	0.11	0.29	0.15	0.05	0.02	0.11	0.25	0.09	0.05	0.03	0.01
EC10 (REF)	1.02	1.07	0.67	4.48	6.42	5.88	4.94	7.83	6.58	9.23	16.17	14.30	11.03	186
standard deviation	0.30	0.31	0.08	0.87	2.89	1.89	0.51	0.46	2.18	6.43	7.11	3.86	1.61	121
Yeast Estrogen Sci	·een (YE	S)												
$EEQ (ng L^{-1})$	83.14	66.63	123.39	1.08	1.03	0.57	1.18	0.71	0.54	0.00	0.63	0.67	0.44	
standard deviation	12.12	11.50	54.08	1.32	0.96	0.68	1.40	1.23	0.76	0.00	0.89	0.95	0.76	
Genotoxicity umu(C test													
LOEC (REF)	na	30	na	74	74	74	74	74	74		148		148	
NOEC (REF)		14.81		37	37	37	37	37	37	148	74	148	74	148

^{*a*} Errors denote the standard deviation of the average of the three independent replicates (three times SPE followed by at least duplicate bioassays) of each sampling event (sample 1, sample 2, sample 3).

This journal is © The Royal Society of Chemistry [2008]

5

Table ESI2 Overview of results of the July 2006 sampling campaign.

	Primary effluent	Secondary effluent	Final effluent	River upstream of STP	River downstream of STP	Procedural blank	Treatment efficiency
Inhibition of bacterial	luminescence						
TEQ (mg L^{-1})	$6.92{\pm}2.46^{a}$	n.d.	0.43 ± 0.43	2.681.11	0.87±0.29	0.07	93.8±3.0%
EC ₁₀ (REF)	0.21±0.06		2.850.10	0.560.19	1.73±0.72	19.3	
Inhibition of algal grow	vth						
TEQ (mg L ⁻¹)	4.48±3.41	n.d.	1.16 ± 0.76	$1.79{\pm}0.85$	2.33±2.05	0.04	74.1±80.6%
EC ₁₀ (REF)	0.71±0.53		2.30±1.52	1.33±0.54	1.46 ± 1.05	48.5	
Inhibition of photosynt	thesis (2 h IPAM)						
$DEQ (\mu g L^{-1})$	$0.29{\pm}0.20$	n.d.	$0.10{\pm}0.01$	0.21±0.09	$0.19{\pm}0.01$	0.002	33.8±44.0%
EC ₁₀ (REF)	0.70±0.23		3.22±0.47	8.43±2.64	0.43±0.14	709	
Inhibition of acetylcho	line esterase						
PT-EQ (µg L ⁻¹)	24.2±161	n.d.	5.92±1.65	n.d.	n.d.		75.5±12.5%
Yeast Estrogen Screen	(YES)						
EEQ (ng L ⁻¹)	43.4±9.0	n.d.	2.70±0.59	3.53±2.84	2.93±1.26	0.23	93.8%
Genotoxicity umuC tes	t						
No activity							

^a Errors denote the standard deviation of the average of the three independent consecutive sampling events (sample 1, sample 2, sample 3).

Table ESI3 Overview of results of the November 2006 sampling campaign.

	Primary effluent	Secondary effluent	Final effluent	River upstream of STP	River downstream of STP	Procedural blank	Treatment efficiency
Inhibition of bacteria	al luminescence						
TEQ (mg L ⁻¹)	3.57±0.67ª	0.13±0.02	0.15 ± 0.03	0.25±0.15	0.25 ± 0.08	0.02	95.9±5.6%
EC ₁₀ (REF)	$0.39{\pm}0.08$	10.7±1.5	9.53±2.31	7.56 ± 5.59	5.71±1.88	87	
Inhibition of algal gr	owth						
TEQ (mg L ⁻¹)	0.64±0.15	0.73±0.35	$0.89{\pm}0.79$	0.16 ± 0.10	0.57±0.18	0.02	No decrease
EC ₁₀ (REF)	$3.39{\pm}0.90$	3.55±2.26	4.35±3.93	20.0±17.9	3.83±1.18	128	
Inhibition of photosy	nthesis (2 h IPAM)						
DEQ (µg L ⁻¹)	$0.07{\pm}0.03$	0.43±0.28	0.16 ± 0.10	0.34 ± 0.24	0.34±0.12		No decrease
EC ₁₀ (REF)	7.81±2.71	1.65 ± 1.20	4.51±3.31	2.08 ± 1.38	1.58 ± 0.54		
Inhibition of acetylcl	holine esterase						
PT-EQ (µg L ⁻¹)	2.94±1.72	0.16±0.05	$0.14{\pm}0.04$	$0.04{\pm}0.01$	$0.19{\pm}0.08$		95.3±1.4%
Yeast Estrogen Scre	en (YES)						
EEQ (ng L ⁻¹)	43.0±11.0	1.03±0.49	0.82 ± 0.14	0.66±0.21	0.92 ± 0.07		98.1±0.7%
Genotoxicity umuC	test						
No activity							

^a Errors denote the standard deviation of the average of the three independent consecutive sampling events (sample 1, sample 2, sample 3).

5 Notes and references

- B. I. Escher, N. Bramaz, M. Maurer, M. Richter, D. Sutter, C. von Känel and M. Zschokke, *Environ. Toxicol. Chem./SETAC*, 2005, 24, 750-758.
- B. I. Escher, W. Pronk, M. J.-F. Suter and M. Maurer, *Environ. Sci. Technol.*, 2006, 40, 5095-5101.
- F. D. L. Leusch, M. R. van den Heuvel, H. F. Chapman, S. R. Gooneratne, A. M. E. Eriksson and L. A. Tremblay, *Comparative Biochemistry and Physiology C-Toxicology & Pharmacology*, 2006, 143, 117-126.

15 4. R. Muller, J. Tang, R. Thier and J. F. Mueller, J. Env. Monitor., 2007, 9, 104-109.

 B. I. Escher, N. Bramaz, J. F. Mueller, P. Quayle and S. Rutishauser, J. Env. Monitor., 2008.

4 | J. Environ. Monit., [2008], [vol], 00–00

20

25

This journal is © The Royal Society of Chemistry [2008]